Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
ACS Catal ; 12(15): 9540-9548, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35966603

ABSTRACT

The lack of efficient and durable proton exchange membrane fuel cell electrocatalysts for the oxygen reduction reaction is still restraining the present hydrogen technology. Graphene-based carbon materials have emerged as a potential solution to replace the existing carbon black (CB) supports; however, their potential was never fully exploited as a commercial solution because of their more demanding properties. Here, a unique and industrially scalable synthesis of platinum-based electrocatalysts on graphene derivative (GD) supports is presented. With an innovative approach, highly homogeneous as well as high metal loaded platinum-alloy (up to 60 wt %) intermetallic catalysts on GDs are achieved. Accelerated degradation tests show enhanced durability when compared to the CB-supported analogues including the commercial benchmark. Additionally, in combination with X-ray photoelectron spectroscopy Auger characterization and Raman spectroscopy, a clear connection between the sp 2 content and structural defects in carbon materials with the catalyst durability is observed. Advanced gas diffusion electrode results show that the GD-supported catalysts exhibit excellent mass activities and possess the properties necessary to reach high currents if utilized correctly. We show record-high peak power densities in comparison to the prior best literature on platinum-based GD-supported materials which is promising information for future application.

2.
J Am Chem Soc ; 144(22): 9753-9763, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35609284

ABSTRACT

The electrochemical activity of modern Fe-N-C electrocatalysts in alkaline media is on par with that of platinum. For successful application in fuel cells (FCs), however, also high durability and longevity must be demonstrated. Currently, a limited understanding of degradation pathways, especially under operando conditions, hinders the design and synthesis of simultaneously active and stable Fe-N-C electrocatalysts. In this work, using a gas diffusion electrode half-cell coupled with inductively coupled plasma mass spectrometry setup, Fe dissolution is studied under conditions close to those in FCs, that is, with a porous catalyst layer (CL) and at current densities up to -125 mA·cm-2. Varying the rate of the oxygen reduction reaction (ORR), we show a remarkable linear correlation between the Faradaic charge passed through the electrode and the amount of Fe dissolved from the electrode. This finding is rationalized assuming that oxygen reduction and Fe dissolution reactions are interlinked, likely through a common intermediate formed during the Fe redox transitions in Fe species involved in the ORR, such as FeNxCy and Fe3C@N-C. Moreover, such a linear correlation allows the application of a simple metric─S-number─to report the material's stability. Hence, in the current work, a powerful tool for a more applied stability screening of different electrocatalysts is introduced, which allows on the one hand fast performance investigations under more realistic conditions, and on the other hand a more advanced mechanistic understanding of Fe-N-C degradation in CLs.

3.
Angew Chem Int Ed Engl ; 60(16): 8882-8888, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33410273

ABSTRACT

Pt dissolution has already been intensively studied in aqueous model systems and many mechanistic insights have been gained. Nevertheless, transfer of new knowledge to real-world fuel cell systems is still a significant challenge. To close this gap, we present a novel in situ method combining a gas diffusion electrode (GDE) half-cell with inductively coupled plasma mass spectrometry (ICP-MS). With this setup, Pt dissolution in realistic catalyst layers and the transport of dissolved Pt species through Nafion membranes were evaluated directly. We observed that 1) specific Pt dissolution increased significantly with decreasing Pt loading, 2) in comparison to experiments on aqueous model systems with flow cells, the measured dissolution in GDE experiments was considerably lower, and 3) by adding a membrane onto the catalyst layer, Pt dissolution was reduced even further. All these phenomena are attributed to the varying mass transport conditions of dissolved Pt species, influencing re-deposition and equilibrium potential.

4.
ACS Appl Energy Mater ; 4(12): 13819-13829, 2021 Dec 27.
Article in English | MEDLINE | ID: mdl-34977474

ABSTRACT

A fast and facile pulse combustion (PC) method that allows for the continuous production of multigram quantities of high-metal-loaded and highly uniform supported metallic nanoparticles (SMNPs) is presented. Namely, various metal on carbon (M/C) composites have been prepared by using only three feedstock components: water, metal-salt, and the supporting material. The present approach can be elegantly utilized also for numerous other applications in electrocatalysis, heterogeneous catalysis, and sensors. In this study, the PC-prepared M/C composites were used as metal precursors for the Pt NPs deposition using double passivation with the galvanic displacement method (DP method). Lastly, by using thin-film rotating disc electrode (TF-RDE) and gas-diffusion electrode (GDE) methodologies, we show that the synergistic effects of combining PC technology with the DP method enable production of superior intermetallic Pt-M electrocatalysts with an improved oxygen reduction reaction (ORR) performance when compared to a commercial Pt-Co electrocatalyst for proton exchange membrane fuel cells (PEMFCs) application.

SELECTION OF CITATIONS
SEARCH DETAIL
...