Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Brain Res ; 463: 114923, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38408523

ABSTRACT

Abnormalities within the hypothalamic-pituitary-adrenal (HPA) axis and autonomic nervous system have been implicated in depression. Studies have reported glucocorticoid insensitivity and reduced heart rate variability (HRV) in depressive disorders. However, little is known about the effects of cortisol on HRV and resting-state functional connectivity (rsFC) of the central autonomic network (CAN) in depression. We collected resting-state fMRI and cardiac data for women with different depression histories (n = 61) after administration of cortisol and placebo using a double-blind crossover design. We computed rsFC for R-amygdala and L-amygdala seeds and assessed the change in HRV after cortisol (cortisol-placebo). Analyses examined the effects of acute cortisol administration on HRV and rsFC of the R-amygdala and L-amygdala. There was a significant interaction between HRV and treatment for rsFC between the amygdala and CAN regions. We found lower rsFC between the L-amygdala and putamen for those with a greater decrease in HRV after cortisol. There was also reduced rsFC between the R-amygdala and dorsomedial prefrontal cortex, putamen, middle cingulate cortex, insula, and cerebellum in those with lower HRV after cortisol. These results remained significant after adjusting for depression symptoms, age, and race. Our findings suggest that the effect of cortisol on CAN connectivity is related to its effects on HRV. Overall, these results could inform transdiagnostic interventions targeting HRV and the stress response systems across clinical and non-clinical populations.


Subject(s)
Depression , Hydrocortisone , Humans , Female , Heart Rate , Depression/diagnostic imaging , Depression/drug therapy , Gyrus Cinguli , Prefrontal Cortex , Magnetic Resonance Imaging
2.
Neuropsychopharmacology ; 43(9): 1884-1890, 2018 08.
Article in English | MEDLINE | ID: mdl-29789576

ABSTRACT

Beginning to engage in heavy alcohol use during adolescence, as opposed to later in life, is associated with elevated risk for a variety of negative consequences, including the development of an alcohol use disorder. Behavioral studies suggest that poor decision making predicts alcohol use during adolescence; however, more research is needed to determine the neurobiological risk factors that underlie this association. Using functional magnetic resonance imaging, brain activation during decision making involving risk and reward was assessed in 47 adolescents (14-15 years old) with no significant history or alcohol or drug use. After baseline assessment, participants completed follow-up interviews every 3 months to assess the duration to onset of binge drinking. Adolescents who made a greater number of risky selections and had greater activation in the nucleus accumbens, precuneus, and occipital cortex during decision making involving greater potential for risk and reward began binge drinking sooner. Findings suggest that heightened activation of reward circuitry during decision making under risk is a neurobiological risk factor for earlier onset of binge drinking. Furthermore, brain activation was a significant predictor of onset to binge drinking, even after controlling for decision-making behavior, suggesting that neurobiological markers may provide additional predictive validity over behavioral assessments. Interventions designed to modify these behavioral and neurobiological risk factors may be useful for curbing heavy alcohol use during adolescence.


Subject(s)
Binge Drinking/physiopathology , Decision Making/physiology , Reward , Risk-Taking , Underage Drinking , Ventral Striatum/physiopathology , Adolescent , Brain Mapping , Female , Follow-Up Studies , Humans , Magnetic Resonance Imaging , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...