Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 67(8): 1678-87, 2013.
Article in English | MEDLINE | ID: mdl-23579820

ABSTRACT

The capacity of activated sludge (AS) microbial populations to form dense granules offers the potential to establish efficiently settleable biomass. This has the potential to circumvent problems around ineffective solids-liquid separation and sensitivity to variable chemical oxygen demand (COD) loads. Although a number of studies have evaluated aerobic laboratory granulation reactors as high-rate treatment systems, the biological processes involved in aerobic granulation are not fully understood. Concomitantly, the impact of operation parameters such as organic loading rates is also important for granulation. The ability of a flocculating AS community to granulate under different selection pressures was evaluated in a laboratory sequencing batch reactor by determining levels of extracellular polymeric substances (EPS) and particle size fractions that developed under feast (4.74 g COD L(-1)) and famine (0.42 g COD L(-1)) nutrient regimes. The efficiency of solid-liquid separation was also measured. Aggregation indices showed levels >94% and a sludge volume index factor of up to 0.94, which strongly suggested granule formation; however, microscopy evaluation showed a mixture of flocs and granules. Particle size analysis revealed binomial distribution patterns of particles in the reactor which shifted to smaller tightly bound particles (<200 µm) although large particles (>600 µm) were also measured during famine conditions. This coincided with increases in EPS levels although EPS quantities were low and it is postulated that this could have impacted granule formation: the EPS in the bacterial aggregates were consumed since the AS community was starved.


Subject(s)
Bioreactors , Sewage/microbiology , Aerobiosis , Biomass , Flocculation , Particle Size , Selection, Genetic
2.
Water Sci Technol ; 65(1): 156-63, 2012.
Article in English | MEDLINE | ID: mdl-22173420

ABSTRACT

Floc formation and settleability is critical for effective solid-liquid separation in many wastewater treatment processes. This study aimed to investigate the relationship between particle size distribution and nutrient conditions in different bioreactor configurations. Size distribution profiles of flocs that formed in continuous (B1), continuous with clarifier and return sludge (B2) and SBR (B3) reactors were investigated in parallel under identical nutrient conditions. An eight-fold dilution of the influent COD of a synthetic dairy processing wastewater resulted in a 'feast and famine' regime that triggered significant effects on the biomass and flocculation characteristics. Floc size analysis of reactor MLSS revealed a shift in floc sizes when reactors were fed with the minimum (famine) COD wastewater feed (0.61 g L(-1)). Increasing floc size distributions were detected for all reactors during the minimum COD feed although different size patterns were observed for different reactor configurations. These increases corresponded with variations in aggregation and EPS quantities. The SBR yielded comparatively larger flocs when operated under both COD feeds as indicated by d(0.9) values (90% of particles ≤ d in size). Overall the results indicated that floc formation and floc size are mediated by nutrient concentrations and represents an important step towards improved solid-liquid separation.


Subject(s)
Bioreactors , Waste Disposal, Fluid/methods , Bacteria/cytology , Bacteria/metabolism , Biological Oxygen Demand Analysis , Dairying , Flocculation , Industrial Waste , Milk Proteins/metabolism , Particle Size , Polysaccharides, Bacterial/metabolism , Sewage/microbiology , Whey Proteins
3.
Water Sci Technol ; 63(4): 689-94, 2011.
Article in English | MEDLINE | ID: mdl-21330715

ABSTRACT

The influence and dynamics of bacterial extracellular polysaccharide (EPS) polymer production and its impact on bioflocculation in activated sludge (AS) bench-scale reactors were investigated. The impact of food to microorganism ratio (F/M), reactor configuration and easily biodegradable carbohydrates in influent streams on biological processes that support or weaken good floc formation and the link with EPS quantity was studied. Bioreactors were run as either sequencing batch or continuous systems using wastewater media with glucose or acetate as C source in different F/M ratios. EPS levels were quantified using mid-infrared spectroscopy which provided a rapid technique for monitoring biological processes within AS WWTP. The analysis revealed an interdependent link between EPS production, sludge settling characteristics and mode of reactor operation. An inverse relationship between F/M ratios and EPS quantities was seen but a positive link between EPS levels and aggregation indices, a measure of the efficiency of inter cell attachment and which indicates good settling properties, was also seen. This indicates that during high F/M conditions in lab-scale AS reactors, low levels of EPS may be produced which could have a negative impact on settling of the biomass. Floc architecture was examined under the microscope. Transient growth of filamentous bacteria was seen in the reactors.


Subject(s)
Biopolymers/metabolism , Bioreactors/microbiology , Extracellular Space/metabolism , Sewage/microbiology , Flocculation , Organic Chemicals/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...