Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
JAMA Neurol ; 80(8): 833-842, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37330974

ABSTRACT

Importance: After aneurysmal subarachnoid hemorrhage, the use of lumbar drains has been suggested to decrease the incidence of delayed cerebral ischemia and improve long-term outcome. Objective: To determine the effectiveness of early lumbar cerebrospinal fluid drainage added to standard of care in patients after aneurysmal subarachnoid hemorrhage. Design, Setting, and Participants: The EARLYDRAIN trial was a pragmatic, multicenter, parallel-group, open-label randomized clinical trial with blinded end point evaluation conducted at 19 centers in Germany, Switzerland, and Canada. The first patient entered January 31, 2011, and the last on January 24, 2016, after 307 randomizations. Follow-up was completed July 2016. Query and retrieval of data on missing items in the case report forms was completed in September 2020. A total of 20 randomizations were invalid, the main reason being lack of informed consent. No participants meeting all inclusion and exclusion criteria were excluded from the intention-to-treat analysis. Exclusion of patients was only performed in per-protocol sensitivity analysis. A total of 287 adult patients with acute aneurysmal subarachnoid hemorrhage of all clinical grades were analyzable. Aneurysm treatment with clipping or coiling was performed within 48 hours. Intervention: A total of 144 patients were randomized to receive an additional lumbar drain after aneurysm treatment and 143 patients to standard of care only. Early lumbar drainage with 5 mL per hour was started within 72 hours of the subarachnoid hemorrhage. Main Outcomes and Measures: Primary outcome was the rate of unfavorable outcome, defined as modified Rankin Scale score of 3 to 6 (range, 0 to 6), obtained by masked assessors 6 months after hemorrhage. Results: Of 287 included patients, 197 (68.6%) were female, and the median (IQR) age was 55 (48-63) years. Lumbar drainage started at a median (IQR) of day 2 (1-2) after aneurysmal subarachnoid hemorrhage. At 6 months, 47 patients (32.6%) in the lumbar drain group and 64 patients (44.8%) in the standard of care group had an unfavorable neurological outcome (risk ratio, 0.73; 95% CI, 0.52 to 0.98; absolute risk difference, -0.12; 95% CI, -0.23 to -0.01; P = .04). Patients treated with a lumbar drain had fewer secondary infarctions at discharge (41 patients [28.5%] vs 57 patients [39.9%]; risk ratio, 0.71; 95% CI, 0.49 to 0.99; absolute risk difference, -0.11; 95% CI, -0.22 to 0; P = .04). Conclusion and Relevance: In this trial, prophylactic lumbar drainage after aneurysmal subarachnoid hemorrhage lessened the burden of secondary infarction and decreased the rate of unfavorable outcome at 6 months. These findings support the use of lumbar drains after aneurysmal subarachnoid hemorrhage. Trial Registration: ClinicalTrials.gov Identifier: NCT01258257.


Subject(s)
Aneurysm , Brain Ischemia , Subarachnoid Hemorrhage , Adult , Humans , Female , Middle Aged , Male , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/surgery , Drainage/adverse effects , Drainage/methods , Cerebral Infarction/complications , Brain Ischemia/complications , Aneurysm/complications , Treatment Outcome
2.
Neurocrit Care ; 32(3): 742-754, 2020 06.
Article in English | MEDLINE | ID: mdl-31418143

ABSTRACT

BACKGROUND: Patients with aneurysmal subarachnoid hemorrhage (aSAH) require close treatment in neuro intensive care units (NICUs). The treatments available to counteract secondary deterioration and delayed ischemic events remain restricted; moreover, available neuro-monitoring of comatose patients is undependable. In comatose patients, clinical signs are hidden, and timing interventions to prevent the evolution of a perfusion disorder in response to fixed ischemic brain damage remain a challenge for NICU teams. Consequently, comatose patients often suffer secondary brain infarctions. The outcomes for long-term intubated patients w/wo pupil dilatation are the worst, with only 10% surviving. We previously added two nitroxide (NO) donors to the standard treatment: continuous intravenous administration of Molsidomine in patients with mild-to-moderate aSAH and, if required as a supplement, intraventricular boluses of sodium nitroprusside (SNP) in high-risk patients to overcome the so-called NO-sink effect, which leads to vasospasm and perfusion disorders. NO boluses were guided by clinical status and promptly reversed recurrent episodes of delayed ischemic neurological deficit. In this study, we tried to translate this concept, the initiation of intraventricular NO application on top of continuous Molsidomine infusion, from awake to comatose patients who lack neurological-clinical monitoring but are primarily monitored using frequently applied transcranial Doppler (TCD). METHODS: In this observational, retrospective, nonrandomized feasibility study, 18 consecutive aSAH comatose/intubated patients (Hunt and Hess IV/V with/without pupil dilatation) whose poor clinical status precluded clinical monitoring received standard neuro-intensive care, frequent TCD monitoring, continuous intravenous Molsidomine plus intraventricular SNP boluses after TCD-confirmed macrospasm during the daytime and on a fixed nighttime schedule. RESULTS: Very likely associated with the application of SNP, which is a matter of further investigation, vasospasm-related TCD findings promptly and reliably reversed or substantially weakened (p < 0.0001) afterward. Delayed cerebral ischemia (DCI) occurred only during loose, low-dose or interrupted treatment (17% vs. an estimated 65% with secondary infarctions) in 17 responders. However, despite their worse initial condition, 29.4% of the responders survived (expected 10%) and four achieved Glasgow Outcome Scale Extended (GOSE) 8-6, modified Rankin Scale (mRS) 0-1 or National Institutes of Health Stroke Scale (NIHSS) 0-2. CONCLUSIONS: Even in comatose/intubated patients, TCD-guided dual-compartment administration of NO donors probably could reverse macrospasm and seems to be feasible. The number of DCI was much lower than expected in this specific subgroup, indicating that this treatment possibly provides a positive impact on outcomes. A randomized trial should verify or falsify our results.


Subject(s)
Aneurysm, Ruptured/surgery , Brain Ischemia/prevention & control , Intracranial Aneurysm/surgery , Molsidomine/therapeutic use , Nitric Oxide Donors/therapeutic use , Nitroprusside/therapeutic use , Subarachnoid Hemorrhage/therapy , Vasospasm, Intracranial/prevention & control , Adult , Aged , Aged, 80 and over , Brain Ischemia/drug therapy , Feasibility Studies , Female , Humans , Infusions, Intravenous , Infusions, Intraventricular , Male , Middle Aged , Retrospective Studies , Rupture, Spontaneous , Vasospasm, Intracranial/drug therapy
3.
J Neurol Surg A Cent Eur Neurosurg ; 79(5): 424-433, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29972859

ABSTRACT

BACKGROUND: Cerebral vasospasm as a delayed, possibly treatable sequel of subarachnoid hemorrhage (SAH) is a focus of experimental animal research. For this purpose, the rat is not a good model because of the difficulty creating a stable subarachnoid clot that persists > 1 to 2 days and could induce vasospasm. Only in rat models with a high mortality of ∼ 50% or more can SAH and its effects be investigated. Therefore, other animals than rodents are used for investigating the delayed effects of SAH. Only animal studies addressing the acute effects of SAH use rats. OBJECTIVE: We designed a model that allows intensive clot formation combined with low mortality to facilitate studies on the delayed effects of experimental SAH, for example, delayed vasospasm or other alterations of vessels. METHODS: After in vitro acceleration of the clotting process in the rats' blood by tissue factor and preliminary in vivo testing, we induced a SAH by injecting blood together with tissue factor in 22 rats. We analyzed clot expansion, length of clot persistence, chronic alterations, and histologic changes. RESULTS: The injection of blood supplemented by tissue factor led to persistent voluminous blood clots in the subarachnoid space close to the large arteries. Despite the pronounced SAH, all animals survived, allowing investigation of delayed SAH effects. All animals killed within the first 7 days after surgery had extensive clots; in some animals, the clots remained until postoperative day 12. During further clot degradation connective tissue appeared, possibly as a precursor of SAH-related late hydrocephalus. CONCLUSION: The injection of blood together with tissue factor significantly improves SAH induction in the rat model. This rat model allows studying delayed SAH effects as found in humans.


Subject(s)
Subarachnoid Hemorrhage/complications , Thrombosis/complications , Vasospasm, Intracranial/etiology , Animals , Disease Models, Animal , Male , Rats , Rats, Wistar
4.
World Neurosurg ; 91: 673.e11-8, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27109628

ABSTRACT

BACKGROUND: A case of hyperacute vasospasm, indicating a poor prognosis after aneurysmal subarachnoid hemorrhage (SAH), is reported, and a review is presented of the literature addressing use of nitric oxide (NO) donors in cases of refractory vasospasm and recurrent delayed cortical ischemias (DCI). CASE DESCRIPTION: A 65-year-old woman was admitted within 1 hour after aneurysmal SAH (Hunt and Hess grade III, Fisher modified by Frontera grade IV). A hyperacute vasospasm had been confirmed arteriographically, the right middle cerebral artery (MCA) aneurysm was immediately coiled and a standard antivasospastic therapy was started. Within 48 hours, the patient developed cerebral vasospasm with DCI. Because the standard therapy failed to control clinical symptoms and to address severe vasospasm, an individualized rescue treatment with NO donors was initiated. A continuous intravenous molsidomine infusion was started and clinical stabilization was achieved for a week (Hunt and Hess grade I; World Federation of Neurological Surgeons grade I; Glasgow Coma Scale score, 15) after which vasospasm and DCI recurred. During a subsequent DCI, we escalated NO donor therapy by adding intraventricular boluses of sodium nitroprusside (SNP). Over the course of the following 22 days, 7 transient DCIs (Glasgow Coma Scale score, 8) were treated with boluses of SNP during continued molsidomine therapy and each time vasospasm and DCI were completely reversed. Despite initial poor prognosis, the clinical outcome was excellent; at 3, 6, and 12 months follow-up the patient's modified National Institutes of Health-Stroke Scale and modified Rankin Scale scores were 0, with no cognitive deficits. CONCLUSIONS: The review of the literature suggested that combined intravenous molsidomine with intraventricular SNP treatment reversed refractory, recurrent vasospasm and DCIs probably by addressing the hemoglobin NO sink effect, NO depletion, and decreased NO availability after aneurysmal SAH.


Subject(s)
Nitric Oxide/administration & dosage , Subarachnoid Hemorrhage/drug therapy , Vasospasm, Intracranial/drug therapy , Aged , Female , Glasgow Coma Scale , Glasgow Outcome Scale , Humans , Injections, Intravenous/methods , Injections, Intraventricular/methods , Molsidomine/administration & dosage , Nitroprusside/administration & dosage , Treatment Outcome
5.
J Neurosurg ; 124(1): 51-8, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26162034

ABSTRACT

OBJECT Delayed ischemic neurological deficits (DINDs) and cerebral vasospasm (CVS) are responsible fora poor outcome in patients with aneurysmal subarachnoid hemorrhage (SAH), most likely because of a decreased availability of nitric oxide (NO) in the cerebral microcirculation. In this study, the authors examined the effects of treatment with the NO donor molsidomine with regard to decreasing the incidence of spasm-related delayed brain infarctions and improving clinical outcome in patients with SAH. METHODS Seventy-four patients with spontaneous aneurysmal SAH were included in this post hoc analysis. Twenty-nine patients with SAH and proven CVS received molsidomine in addition to oral or intravenous nimodipine. Control groups consisted of 25 SAH patients with proven vasospasm and 20 SAH patients without. These patients received nimodipine therapy alone. Cranial computed tomography (CCT) before and after treatment was analyzed for CVS-related infarcts. A modified National Institutes of Health Stroke Scale (mNIHSS) and the modified Rankin Scale (mRS) were used to assess outcomes at a 3-month clinical follow-up. RESULTS Four of the 29 (13.8%) patients receiving molsidomine plus nimodipine and 22 of the 45 (48%) patients receiving nimodipine therapy alone developed vasospasm-associated brain infarcts (p < 0.01). Follow-up revealed a median mNIHSS score of 3.0 and a median mRS score of 2.5 in the molsidomine group compared with scores of 11.5 and 5.0, respectively, in the nimodipine group with CVS (p < 0.001). One patient in the molsidomine treatment group died, and 12 patients in the standard care group died (p < 0.01). CONCLUSIONS In this post hoc analysis, patients with CVS who were treated with intravenous molsidomine had a significant improvement in clinical outcome and less cerebral infarction. Molsidomine offers a promising therapeutic option in patients with severe SAH and CVS and should be assessed in a prospective study.


Subject(s)
Brain Infarction/prevention & control , Brain Ischemia/prevention & control , Molsidomine/therapeutic use , Nervous System Diseases/prevention & control , Subarachnoid Hemorrhage/surgery , Vasodilator Agents/therapeutic use , Vasospasm, Intracranial/prevention & control , Adolescent , Adult , Aged , Aged, 80 and over , Brain Infarction/etiology , Brain Ischemia/etiology , Drug Therapy, Combination , Female , Follow-Up Studies , Hemodynamics , Humans , Male , Middle Aged , Nervous System Diseases/etiology , Nimodipine/therapeutic use , Prospective Studies , Stroke/epidemiology , Subarachnoid Hemorrhage/complications , Tomography, X-Ray Computed , Treatment Outcome , Vasospasm, Intracranial/mortality , Young Adult
6.
Lab Anim (NY) ; 39(11): 352-9, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20962761

ABSTRACT

Research using rats sometimes requires long-term placement of catheters in the subarachnoid space, the cavity between the arachnoid mater and the pia mater in the brain. These catheters can be used to experimentally induce subarachnoid bleeding by injecting blood or to locally administer drugs or other substances. To date, published techniques for penetrating the subarachnoid space of small experimental animals require the use of inflexible or relatively inflexible catheters. These catheters typically consist of metal or stiff plastic and are used to access the occipital or frontal cranial cavity or to directly access the cisterna magna via the atlantooccipital membrane. However, inflexible catheters are not ideal for long-term placement in the subarachnoid space. In this paper, the authors describe a reliable procedure for long-term catheterization of the subarachnoid cavity of the rat. For this method, personnel insert the catheter and keep it in place in the rat's middle cranial cavity, in the vicinity of the cerebral arterial circle. This new approach allows personnel to repeatedly use the catheter for a period of at least 2 weeks. The catheter, which is well-tolerated by rats, can be used for administering saline solutions and for injecting blood that has not been treated with heparin into the subarachnoid space.


Subject(s)
Catheterization/veterinary , Cranial Fossa, Middle/surgery , Rats, Wistar/surgery , Animals , Catheterization/methods , Male , Rats , Specific Pathogen-Free Organisms , Subarachnoid Space/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...