Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 63(19): 8674-8684, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38691843

ABSTRACT

Pertechnetate, the most stable form of the radionuclide 99Tc in aerobic aqueous systems, is a hazardous anion present in nuclear waste. Its high mobility in water makes the remediation of the anion challenging. In the past decade, significant effort has been placed into finding materials capable of adsorbing this species. Here, we present the synthesis and high-resolution crystal structure of the coordination polymer [Ag(2,4'-bipyridine)]NO3, which is capable of sequestering perrhenate─a pertechnetate surrogate─through anion exchange to form another new coordination polymer, [Ag(2,4'-bipyridine)]ReO4. Both the beginning and end structures were solved by single-crystal X-ray diffraction and the adsorption reaction was monitored through inductively coupled plasma-optical emission spectroscopy and UV-vis spectroscopy. The exchange reaction follows a pseudo-second-order mechanism and the maximum adsorption capacity is 764 mg ReO4/g [Ag(2,4'-bipyridine)]NO3, one of the highest recorded for a coordination polymer or metal-organic framework. A solvent-mediated recrystallization mechanism was determined by monitoring the ion-exchange reaction by scanning electron microscopy-energy-dispersive spectroscopy and powder X-ray diffraction.

2.
Inorg Chem ; 61(51): 20824-20833, 2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36490385

ABSTRACT

We report the high-capacity and selective uptake of Cr(VI) from water using the coordination polymer silver bipyridine acetate (SBA, [Ag(4,4'-bipy)][CH3CO2]·3H2O). Cr capture involves the release of acetate, and we have structurally characterized two of the product phases that form: silver bipyridine chromate (SBC, SLUG-56, [Ag(4,4'-bipy)][CrO4]0.5·3.5H2O) and silver bipyridine dichromate (SBDC, SLUG-57, [Ag(4,4'-bipy)][Cr2O7]0.5·H2O). SBA maintains a high Cr uptake capacity over a wide range of pH values (2-10), reaching a maximum of 143 mg Cr/g at pH 4. This Cr uptake capacity is one of the highest among coordination polymers. SBA offers the additional benefits of a one-step, room temperature, aqueous synthesis and its release of a non-toxic anion following Cr(VI) capture, acetate. Furthermore, SBA capture of Cr(VI) remains >97% in the presence of a 50-fold molar excess of sulfate, nitrate, or carbonate. We also investigated the Cr(VI) sequestration abilities of silver 1,2-bis(4-pyridyl)ethane nitrate (SEN, [Ag(4,4'-bpe)][NO3]) and structurally characterized the silver 1,2-bis(4-pyridyl)ethane chromate (SEC, SLUG-58, [Ag(4,4'-bpe)][CrO4]0.5) product. SEN was, however, a less effective Cr(VI) sequestering material than SBA.

3.
Chem Sci ; 13(3): 671-680, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35173931

ABSTRACT

Following the seminal theoretical work on the pleated ß-sheet published by Pauling and Corey in 1951, the rippled ß-sheet was hypothesized by the same authors in 1953. In the pleated ß-sheet the interacting ß-strands have the same chirality, whereas in the rippled ß-sheet the interacting ß-strands are mirror-images. Unlike with the pleated ß-sheet that is now common textbook knowledge, the rippled ß-sheet has been much slower to evolve. Much of the experimental work on rippled sheets came from groups that study aggregating racemic peptide systems over the course of the past decade. This includes MAX1/DMAX hydrogels (Schneider), L/D-KFE8 aggregating systems (Nilsson), and racemic Amyloid ß mixtures (Raskatov). Whether a racemic peptide mixture is "ripple-genic" (i.e., whether it forms a rippled sheet) or "pleat-genic" (i.e., whether it forms a pleated sheet) is likely governed by a complex interplay of thermodynamic and kinetic effects. Structural insights into rippled sheets remain limited to only a very few studies that combined sparse experimental structural constraints with molecular modeling. Crystal structures of rippled sheets are needed so we can rationally design rippled sheet architectures. Here we report a high-resolution crystal structure, in which (l,l,l)-triphenylalanine and (d,d,d)-triphenylalanine form dimeric antiparallel rippled sheets, which pack into herringbone layer structures. The arrangements of the tripeptides and their mirror-images in the individual dimers were in excellent agreement with the theoretical predictions by Pauling and Corey. A subsequent mining of the PDB identified three orphaned rippled sheets among racemic protein crystal structures.

4.
Environ Sci Technol ; 53(13): 7663-7672, 2019 Jul 02.
Article in English | MEDLINE | ID: mdl-31174421

ABSTRACT

We report the first example of linker modification for an N-donor Ag-based cationic material while maintaining and in some cases increasing the anion exchange capacity. Cationic silver(I) pyrazine nitrate selectively traps harmful oxo-anions from water such as permanganate, perrhenate and a variety of α,ω-alkanedicarboxylates. We chose these anions as initial examples of exchange for potential water purification. The host-guest interaction between the cationic layers of π-stacked silver pyrazine polymers and the incoming/outgoing interlamellar anions allows for the exchange. The exchange capacity over 24 h reached 435 and 818 mg/g for permanganate and perrhenate, respectively, a record for a crystalline metal-organic material and over five times the exchange capacity compared to commercial resin. The material also undergoes organic exchange as an analog for pharmaceutical waste, some of which have a carboxylate functionality at the neutral pH range typical of natural water sources. Both the as-synthesized and exchanged materials are characterized by a variety of analytical techniques.


Subject(s)
Polymers , Silver , Anions , Pyrazines , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...