Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
ACS Appl Electron Mater ; 6(2): 853-861, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38435801

ABSTRACT

The local environments of Sc and Y in predominantly ⟨002⟩ textured, Al1-xDoxN (Do = Sc, x = 0.25, 0.30 or Y, x = 0.25) sputtered thin films with wurtzite symmetry were investigated using X-ray absorption (XAS) and photoelectron (XPS) spectroscopies. We present evidence from the X-ray absorption fine structure (XAFS) spectra that, when x = 0.25, both Sc3+ and Y3+ ions are able to substitute for Al3+, thereby acquiring four tetrahedrally coordinated nitrogen ligands, i.e., coordination number (CN) of 4. On this basis, the crystal radius of the dopant species in the wurtzite lattice, not available heretofore, could be calculated. By modeling the scandium local environment, extended XAFS (EXAFS) analysis suggests that when x increases from 0.25 to 0.30, CN for a fraction of the Sc ions increases from 4 to 6, signaling octahedral coordination. This change occurs at a dopant concentration significantly lower than the reported maximum concentration of Sc (42 mol % Sc) in wurtzite (Al, Sc)N. XPS spectra provide support for our observation that the local environment of Sc in (Al, Sc)N may include more than one type of coordination.

2.
Nat Commun ; 14(1): 7371, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37963883

ABSTRACT

Electrostrictors, materials developing mechanical strain proportional to the square of the applied electric field, present many advantages for mechanical actuation as they convert electrical energy into mechanical, but not vice versa. Both high relative permittivity and reliance on Pb as the key component in commercial electrostrictors pose serious practical and health problems. Here we describe a low relative permittivity (<250) ceramic, ZrxCe1-xO2 (x < 0.2), that displays electromechanical properties rivaling those of the best performing electrostrictors: longitudinal electrostriction strain coefficient ~10-16 m2/V2; relaxation frequency ≈ a few kHz; and strain ≥0.02%. Combining X-ray absorption spectroscopy, atomic-level modeling and electromechanical measurements, here we show that electrostriction in ZrxCe1-xO2 is enabled by elastic dipoles produced by anharmonic motion of the smaller isovalent dopant (Zr). Unlike the elastic dipoles in aliovalent doped ceria, which are present even in the absence of an applied elastic or electric field, the elastic dipoles in ZrxCe1-xO2 are formed only under applied anisotropic field. The local descriptors of electrostrictive strain, namely, the cation size mismatch and dynamic anharmonicity, are sufficiently versatile to guide future searches in other polycrystalline solids.

3.
J Am Chem Soc ; 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37933117

ABSTRACT

A key conundrum of biomolecular electronics is efficient electron transport (ETp) through solid-state junctions up to 10 nm, often without temperature activation. Such behavior challenges known charge transport mechanisms, especially via nonconjugated molecules such as proteins. Single-step, coherent quantum-mechanical tunneling proposed for ETp across small protein, 2-3 nm wide junctions, but it is problematic for larger proteins. Here we exploit the ability of bacteriorhodopsin (bR), a well-studied, 4-5 nm long membrane protein, to assemble into well-defined single and multiple bilayers, from ∼9 to 60 nm thick, to investigate ETp limits as a function of junction width. To ensure sufficient signal/noise, we use large area (∼10-3 cm2) Au-protein-Si junctions. Photoemission spectra indicate a wide energy separation between electrode Fermi and the nearest protein-energy levels, as expected for a polymer of mostly saturated components. Junction currents decreased exponentially with increasing junction width, with uniquely low length-decay constants (0.05-0.5 nm-1). Remarkably, even for the widest junctions, currents are nearly temperature-independent, completely so below 160 K. While, among other things, the lack of temperature-dependence excludes, hopping as a plausible mechanism, coherent quantum-mechanical tunneling over 60 nm is physically implausible. The results may be understood if ETp is limited by injection into one of the contacts, followed by more efficient charge propagation across the protein. Still, the electrostatics of the protein films further limit the number of charge carriers injected into the protein film. How electron transport across dozens of nanometers of protein layers is more efficient than injection defines a riddle, requiring further study.

4.
J Am Chem Soc ; 145(34): 18904-18911, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37602827

ABSTRACT

This work reports that the octahedral hydrated Al3+ and Mg2+ ions operate within electrolytic cells as kosmotropic (long-range order-making) "ice makers" of supercooled water (SCW). 10-5 M solutions of hydrated Al3+ and Mg2+ ions each trigger, near the cathode (-20 ± 5 V), electro-freezing of SCW at -4 °C. The hydrated Al3+ ions do so with 100% efficiency, whereas the Mg2+ ions induce icing with 40% efficiency. In contrast, hydrated Na+ ions, under the same experimental conditions, do not induce icing differently than pure water. As such, our study shows that the role played by Al3+ and Mg2+ ions in water electro-freezing is impacted by two synchronous effects: (1) a geometric effect due to the octahedral packing of the coordinated water molecules around the metallic ions, and (2) the degree of polarization which these two ions induce and thereby acidify the coordinated water molecules, which in turn imparts them with an ice-like structure. Long-duration molecular dynamics (MD) simulations of the Al3+ and Mg2+ indeed reveal the formation of "ice-like" hexagons in the vicinity of these ions. Furthermore, the MD shows that these hexagons and the electric fields of the coordinate water molecules give rise to ultimate icing. As such, the MD simulations provide a rational explanation for the order-making properties of these ions during electro-freezing.

5.
Angew Chem Int Ed Engl ; 61(49): e202213955, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36200991

ABSTRACT

Design of pyroelectric crystals decoupled from piezoelectricity is not only a topic of scientific curiosity but also demonstrates effects in principle that have the potential to be technologically advantageous. Here we report a new method for the design of such materials. Thus, the co-doping of centrosymmetric crystals with tailor-made guest molecules, as illustrated by the doping of α-glycine with different amino acids (Threonine, Alanine and Serine). The polarization of those crystals displays two distinct contributions, one arising from the difference in dipole moments between guest and host and the other from the displacement of host molecules from their symmetry-related positions. These contributions exhibit different temperature dependences and response to mechanical deformation. Thus, providing a proof of concept for the ability to design pyroelectric materials with reduced piezoelectric coefficient (d22 ) to a minimal value, below the resolution limit of the method (<0.005 pm/V).


Subject(s)
Amino Acids , Glycine , Glycine/chemistry , Crystallization , Amino Acids/chemistry , Alanine/chemistry
6.
Sensors (Basel) ; 22(18)2022 Sep 17.
Article in English | MEDLINE | ID: mdl-36146391

ABSTRACT

A protocol for successfully depositing [001] textured, 2−3 µm thick films of Al0.75Sc0.25N, is proposed. The procedure relies on the fact that sputtered Ti is [001]-textured α-phase (hcp). Diffusion of nitrogen ions into the α-Ti film during reactive sputtering of Al0.75,Sc0.25N likely forms a [111]-oriented TiN intermediate layer. The lattice mismatch of this very thin film with Al0.75Sc0.25N is ~3.7%, providing excellent conditions for epitaxial growth. In contrast to earlier reports, the Al0.75Sc0.25N films prepared in the current study are Al-terminated. Low growth stress (<100 MPa) allows films up to 3 µm thick to be deposited without loss of orientation or decrease in piezoelectric coefficient. An advantage of the proposed technique is that it is compatible with a variety of substrates commonly used for actuators or MEMS, as demonstrated here for both Si wafers and D263 borosilicate glass. Additionally, thicker films can potentially lead to increased piezoelectric stress/strain by supporting application of higher voltage, but without increase in the magnitude of the electric field.

7.
Acc Chem Res ; 55(10): 1383-1394, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35504292

ABSTRACT

ConspectusThe ability to control the icing temperature of supercooled water (SCW) is of supreme importance in subfields of pure and applied sciences. The ice freezing of SCW can be influenced heterogeneously by electric effects, a process known as electrofreezing. This effect was first discovered during the 19th century; however, its mechanism is still under debate. In this Account we demonstrate, by capitalizing on the properties of polar crystals, that heterogeneous electrofreezing of SCW is a chemical process influenced by an electric field and specific ions. Polar crystals possess a net dipole moment. In addition, they are pyroelectric, displaying short-lived surface charges at their hemihedral faces at the two poles of the crystals as a result of temperature changes. Accordingly, during cooling or heating, an electric field is created, which is negated by the attraction of compensating charges from the environment. This process had an impact in the following experiments. The icing temperatures of SCW within crevices of polar crystals are higher in comparison to icing temperatures within crevices of nonpolar analogs. The role played by the electric effect was extricated from other effects by the performance of icing experiments on the surfaces of pyroelectric quasi-amorphous SrTiO3. During those studies it was found that on positively charged surfaces the icing temperature of SCW is elevated, whereas on negatively charged surfaces it is reduced. Following investigations discovered that the icing temperature of SCW is impacted by an ionic current created within a hydrated layer on top of hydrophilic faces residing parallel to the polar axes of the crystals. In the absence of such current on analogous hydrophobic surfaces, the pyroelectric effect does not influence the icing temperature of SCW. Those results implied that electrofreezing of SCW is a process influenced by specific compensating ions attracted by the pyroelectric field from the aqueous solution. When freezing experiments are performed in an open atmosphere, bicarbonate and hydronium ions, created by the dissolution of atmospheric CO2 in water, influence the icing temperature. The bicarbonate ions, when attracted by positively charged pyroelectric surfaces, elevate the icing temperature, whereas their counterparts, hydronium ions, when attracted by the negatively charged surfaces reduce the icing temperature. Molecular dynamic simulations suggested that bicarbonate ions, concentrated within the near positively charged interfacial layer, self-assemble with water molecules to create stabilized slightly distorted "ice-like" hexagonal assemblies which mimic the hexagons of the crystals of ice. This occurs by replacing, within those ice-like hexagons, two hydrogen bonds of water by C-O bonds of the HCO3- ion. On the basis of these simulations, it was predicted and experimentally confirmed that other trigonal planar ions such as NO3-, guanidinium+, and the quasi-hexagonal biguanidinium+ ion elevate the icing temperature. These ions were coined as "ice makers". Other ions including hydronium, Cl-, and SO4-2 interfere with the formation of ice-like assemblies and operate as "ice breakers". The higher icing temperatures induced within the crevices of the hydrophobic polar crystals in comparison to the nonpolar analogs can be attributed to the proton ordering of the water molecules. In contrast, the icing temperatures on related hydrophilic surfaces are influenced both by compensating charges and by proton ordering.

8.
Materials (Basel) ; 14(17)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34501012

ABSTRACT

Piezoelectricity is the ability of certain crystals to generate mechanical strain proportional to an external electric field. Though many biomolecular crystals contain polar molecules, they are frequently centrosymmetric, signifying that the dipole moments of constituent molecules cancel each other. However, piezoelectricity can be induced by stereospecific doping leading to symmetry reduction. Here, we applied piezoresponse force microscopy (PFM), highly sensitive to local piezoelectricity, to characterize (01¯0) faces of a popular biomolecular material, α-glycine, doped with other amino acids such as L-alanine and L-threonine as well as co-doped with both. We show that, while apparent vertical piezoresponse is prone to parasitic electrostatic effects, shear piezoelectric activity is strongly affected by doping. Undoped α-glycine shows no shear piezoelectric response at all. The shear response of the L-alanine doped crystals is much larger than those of the L-threonine doped crystals and co-doped crystals. These observations are rationalized in terms of host-guest molecule interactions.

9.
ACS Nano ; 14(12): 16624-16633, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33095016

ABSTRACT

Room-temperature, long-range (300 nm), chirality-induced spin-selective electron conduction is found in chiral metal-organic Cu(II) phenylalanine crystals, using magnetic conductive-probe atomic force microscopy. These crystals are found to be also weakly ferromagnetic and ferroelectric. Notably, the observed ferromagnetism is thermally activated, so that the crystals are antiferromagnetic at low temperatures and become ferromagnetic above ∼50 K. Electron paramagnetic resonance measurements and density functional theory calculations suggest that these unusual magnetic properties result from indirect exchange interaction of the Cu(II) ions through the chiral lattice.

10.
Materials (Basel) ; 13(20)2020 Oct 19.
Article in English | MEDLINE | ID: mdl-33086709

ABSTRACT

Surface pyroelectricity and piezoelectricity induced by water incorporation during growth in α-glycine were investigated. Using the periodic temperature change technique, we have determined the thickness (~280 µm) of the near surface layer (NSL) and its pyroelectric coefficient (160 pC/(K × cm2) at 23 °C) independently. The thickness of NSL remains nearly constant till 60 °C and the pyroelectric effect vanishes abruptly by 70 °C. The piezoelectric effect, 0.1 pm/V at 23 °C measured with an interferometer, followed the same temperature dependence as the pyroelectric effect. Abrupt disappearance of both effects at 70 °C is irreversible and suggests that water incorporation to α-glycine forms a well defined near surface phase, which is different form α-glycine because it is polar but it too close to α-glycine to be distinguished by X-ray diffraction (XRD). The secondary pyroelectric effect was found to be <14% of the total, which is unexpectedly small for a material with a large thermal expansion coefficient. This implies that water incorporation infers minimal distortions in the host lattice. This finding suggests a path for the control of the piezoelectric and pyroelectric effects of the crystals using stereospecific incorporation of the guest molecules.

11.
Angew Chem Int Ed Engl ; 59(36): 15575-15579, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32627307

ABSTRACT

Electrofreezing experiments of super-cooled water (SCW) with different ions, performed directly on the charged hemihedral faces of pyroelectric LiTaO3 and AgI crystals, in the presence and in the absence of pyroelectric charge are reported. It is demonstrated that bicarbonate (HCO3 - ) ions elevate the icing temperature near the positively charged faces. In contrast, the hydronium (H3 O+ ) slightly reduces the icing temperature. Molecular dynamics simulations suggest that the hydrated trigonal planar HCO3 - ions self-assemble with water molecules near the surface of the AgI crystal as clusters of slightly different configuration from those of the ice-like hexagons. These clusters, however, have a tendency to serve as embryonic nuclei for ice crystallization. Consequently, we predicted and experimentally confirmed that the trigonal planar ions of NO3 - and guanidinium (Gdm+ ), at appropriate concentrations, elevate the icing temperature near the positive and negative charged surfaces, respectively. On the other hand, the Cl- and SO4 2- ions of different configurations reduce the icing temperature.

12.
Angew Chem Int Ed Engl ; 59(36): 15570-15574, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32621797

ABSTRACT

By performing icing experiments on hydrophilic and hydrophobic surfaces of pyroelectric amino acids and on the x-cut faces of LiTaO3 , we discovered that the effect of electrofreezing of super cooled water is triggered by ions of carbonic acid. During the cooling of the hydrophilic pyroelectric crystals, a continuous water layer is created between the charged hemihedral faces, as confirmed by impedance measurements. As a result, a current of carbonic acid ions, produced by dissolved environmental CO2 , flows through the wetted layer towards the hemihedral faces and elevates the icing temperature. This proposed mechanism is based on the following: (i) on hydrophilic surfaces, water with dissolved CO2 (pH 4) freezes at higher temperatures than pure water of pH 7. (ii) In the absence of the ionic current, achieved by linking the two hemihedral faces of hydrophilic crystals by a conductive paint, water of the two pH levels freeze at the same temperature. (iii) On hydrophobic crystals with similar pyroelectric coefficients, where there is no continuous wetted layer, no electrofreezing effect is observed.

13.
Adv Mater ; 31(44): e1904733, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31532884

ABSTRACT

Symmetry-imposed restrictions on the number of available pyroelectric and piezoelectric materials remain a major limitation as 22 out of 32 crystallographic material classes exhibit neither pyroelectricity nor piezoelectricity. Yet, by breaking the lattice symmetry it is possible to circumvent this limitation. Here, using a unique technique for measuring transient currents upon rapid heating, direct experimental evidence is provided that despite the fact that bulk SrTiO3 is not pyroelectric, the (100) surface of TiO2 -terminated SrTiO3 is intrinsically pyroelectric at room temperature. The pyroelectric layer is found to be ≈1 nm thick and, surprisingly, its polarization is comparable with that of strongly polar materials such as BaTiO3 . The pyroelectric effect can be tuned ON/OFF by the formation or removal of a nanometric SiO2 layer. Using density functional theory, the pyroelectricity is found to be a result of polar surface relaxation, which can be suppressed by varying the lattice symmetry breaking using a SiO2 capping layer. The observation of pyroelectricity emerging at the SrTiO3 surface also implies that it is intrinsically piezoelectric. These findings may pave the way for observing and tailoring piezo- and pyroelectricity in any material through appropriate breaking of symmetry at surfaces and artificial nanostructures such as heterointerfaces and superlattices.

14.
Angew Chem Int Ed Engl ; 57(24): 7076-7079, 2018 06 11.
Article in English | MEDLINE | ID: mdl-29682850

ABSTRACT

The pyroelectricity of AgI crystals strongly affects the icing temperature of super-cooled water, as disentangled from that of epitaxy. This deduction was achieved by the design of polar crystalline ceramic pellets of AgI, with experimentally determined sense of polarity. These pellets are suitable for measuring both their pyroelectric properties as well as the icing temperature of super-cooled water, separately on each of the expressed Ag+ and I- hemihedral surfaces. The positive pyroelectric charge at the silver-enriched side elevates the icing temperature, whereas the negative charge at the iodide side decreases that temperature. Moreover, the effect of pyroelectric charge remains dominant despite the presence of contaminants on both the silver and the iodide-enriched surfaces. Consequently an electrochemical process for ice nucleation is suggested, which might be of relevance for understanding the role played by electric charges in heterogeneous icing processes in general.

15.
Acc Chem Res ; 51(5): 1238-1248, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29676901

ABSTRACT

Crystals are physical arrays delineated by polar surfaces and often contain imperfections of a polar nature. Understanding the structure of such defects on the molecular level is of topical importance since they strongly affect the macroscopic properties of materials. Moreover, polar imperfections in crystals can be created intentionally and specifically designed by doping nonpolar crystals with "tailor-made" additives as dopants, since their incorporation generally takes place in a polar mode. Insertion of dopants also induces a polar deformation of neighboring host molecules, resulting in the creation of polar domains within the crystals. The contribution of the distorted host molecules to the polarity of such domains should be substantial, particularly in crystals composed of molecules with large dipole moments, such as the zwitterionic amino acids, which possess dipole moments as high as ∼14 D. Polar materials are pyroelectric, i.e., they generate surface charge as a result of temperature change. With the application of recent very sensitive instruments for measuring electric currents, coupled with theoretical computations, it has become possible to determine the structure of polar imperfections, including surfaces, at a molecular level. The detection of pyroelectricity requires attachment of electrodes, which might induce various artifacts and modify the surface of the crystal. Therefore, a new method for contactless pyroelectric measurement using X-ray photoelectron spectroscopy was developed and compared to the traditional periodic temperature change technique. Here we describe the molecular-level determination of the structure of imperfections of different natures in molecular crystals and how they affect the macroscopic properties of the crystals, with the following specific examples: (i) Experimental support for the nonclassical crystal growth mechanism as provided by the detection of pyroelectricity from near-surface solvated polar layers present at different faces of nonpolar amino acid crystals. (ii) Enantiomeric disorder in dl-alanine crystals disclosed by detection of anomalously strong pyroelectricity along their nonpolar directions. The presence of such disorder, which is not revealed by accurate diffraction techniques, explains the riddle of their needlelike morphology. (iii) The design of mixed polar crystals of l-asparagine·H2O/l-aspartic acid with controlled degrees of polarity, as determined by pyroelectricity and X-ray diffraction, and their use in mechanistic studies of electrofreezing of supercooled water. (iv) Pyroelectricity coupled with dispersion-corrected density functional theory calculations and molecular dynamics simulations as an analytical method for the molecular-level determination of the structure of polar domains created by doping of α-glycine crystals with different l-amino acids at concentrations below 0.5%. (v) Selective insertion of minute amounts of alcohols within the bulk of α-glycine crystals, elucidating their role as inducers of the metastable ß-glycine polymorph. In conclusion, the various examples demonstrate that although these imperfections are present in minute amounts, they can be detected by the sensitive pyroelectric measurement, and by combining them with theoretical computations one can elucidate their diverse emerging functionalities.


Subject(s)
Amino Acids/chemistry , Crystallization , Electrochemical Techniques/methods , Stereoisomerism , Temperature , Water/chemistry
16.
Angew Chem Int Ed Engl ; 57(18): 4965-4969, 2018 04 23.
Article in English | MEDLINE | ID: mdl-29405549

ABSTRACT

Metastable polymorphs commonly emerge when the formation of the stable analogues is inhibited by using different solvents or auxiliaries. Herein, we report that when glycine is grown in aqueous solutions in the presence of low concentrations of different co-solvents, only alcohols and acetone, unlike water and acetic acid, are selectively incorporated in minute amounts within the bulk of the α-polymorph. These findings demonstrate that although water binds more strongly to the growing face of the crystal, alcohols and acetone are exclusively incorporated, and thus serve as efficient inhibitors of this polymorph, leading to the precipitation of the ß-form. These solvents then create polar domains detectable by pyroelectric measurements and impedance spectroscopy. These results suggest that in the control of crystal polymorphism with co-solvents, one should consider also the different desolvation rates in addition to the energy of binding to the growing faces of the crystal.

17.
Proc Natl Acad Sci U S A ; 114(28): E5504-E5512, 2017 07 11.
Article in English | MEDLINE | ID: mdl-28588141

ABSTRACT

Halide perovskite (HaP) semiconductors are revolutionizing photovoltaic (PV) solar energy conversion by showing remarkable performance of solar cells made with HaPs, especially tetragonal methylammonium lead triiodide (MAPbI3). In particular, the low voltage loss of these cells implies a remarkably low recombination rate of photogenerated carriers. It was suggested that low recombination can be due to the spatial separation of electrons and holes, a possibility if MAPbI3 is a semiconducting ferroelectric, which, however, requires clear experimental evidence. As a first step, we show that, in operando, MAPbI3 (unlike MAPbBr3) is pyroelectric, which implies it can be ferroelectric. The next step, proving it is (not) ferroelectric, is challenging, because of the material's relatively high electrical conductance (a consequence of an optical band gap suitable for PV conversion) and low stability under high applied bias voltage. This excludes normal measurements of a ferroelectric hysteresis loop, to prove ferroelectricity's hallmark switchable polarization. By adopting an approach suitable for electrically leaky materials as MAPbI3, we show here ferroelectric hysteresis from well-characterized single crystals at low temperature (still within the tetragonal phase, which is stable at room temperature). By chemical etching, we also can image the structural fingerprint for ferroelectricity, polar domains, periodically stacked along the polar axis of the crystal, which, as predicted by theory, scale with the overall crystal size. We also succeeded in detecting clear second harmonic generation, direct evidence for the material's noncentrosymmetry. We note that the material's ferroelectric nature, can, but need not be important in a PV cell at room temperature.

18.
J Am Chem Soc ; 138(44): 14756-14763, 2016 11 09.
Article in English | MEDLINE | ID: mdl-27779856

ABSTRACT

The riddle of anomalous polar behavior of the centrosymmetric crystal of α-glycine is resolved by the discovery of a polar, several hundred nanometer thick hydrated layer, created at the {010} faces during crystal growth. This layer was detected by two independent pyroelectric analytical methods: (i) periodic temperature change technique (Chynoweth) at ambient conditions and (ii) contactless X-ray photoelectron spectroscopy under ultrahigh vacuum. The total polarization of the surface layer is extremely large, yielding ≈1 µC·cm-2, and is preserved in ultrahigh vacuum, but disappears upon heating to 100 °C. Molecular dynamics simulations corroborate the formation of polar hydrated layers at the sub-microsecond time scale, however with a thickness of only several nanometers, not several hundred. This inconsistency might be reconciled by invoking a three-step nonclassical crystal growth mechanism comprising (i) docking of clusters from the supersaturated solution onto the evolving crystal, (ii) surface recognition and polar induction, and (iii) annealing and dehydration, followed by site-selective recrystallization.


Subject(s)
Glycine/chemistry , Molecular Dynamics Simulation , Crystallization , Microscopy, Atomic Force , Water/chemistry
19.
J Phys Chem Lett ; 7(1): 43-6, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26641500

ABSTRACT

Polar crystals, which display pyroelectricity, have a propensity to elevate, in a heterogeneous nucleation, without epitaxy, the freezing temperature of supercooled water (SCW). Upon cooling, such crystals accumulate an electric charge at their surfaces, which creates weak electric fields,

20.
J Phys Chem Lett ; 7(1): 191-7, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26687721

ABSTRACT

Halide perovskite-based solar cells still have limited reproducibility, stability, and incomplete understanding of how they work. We track electronic processes in [CH3NH3]PbI3(Cl) ("perovskite") films in vacuo, and in N2, air, and O2, using impedance spectroscopy (IS), contact potential difference, and surface photovoltage measurements, providing direct evidence for perovskite sensitivity to the ambient environment. Two major characteristics of the perovskite IS response change with ambient environment, viz. -1- appearance of negative capacitance in vacuo or post-vacuo N2 exposure, indicating for the first time an electrochemical process in the perovskite, and -2- orders of magnitude decrease in the film resistance upon transferring the film from O2-rich ambient atmosphere to vacuum. The same change in ambient conditions also results in a 0.5 V decrease in the material work function. We suggest that facile adsorption of oxygen onto the film dedopes it from n-type toward intrinsic. These effects influence any material characterization, i.e., results may be ambient-dependent due to changes in the material's electrical properties and electrochemical reactivity, which can also affect material stability.

SELECTION OF CITATIONS
SEARCH DETAIL
...