Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Cell Surf ; 6: 100046, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33204900

ABSTRACT

Cell walls are essential in the interaction of fungi with the (a)biotic environment and are also key to hyphal morphogenesis and mechanical strength. Here, we used solid-state NMR (ssNMR) spectroscopy combined with HPLC and GC-MS to study the structural organization of the cell wall of a representative of the Basidiomycota, one of the two main phyla of fungi. Based on the data we propose a refined model for the cell wall of a basidiomycete. In this model, the rigid core is built from α- and ß-(1,3)-glucan, ß-(1,3)-(1,6)-glucan, highly branched and single stranded ß-(1,4)-chitin as well as polymeric fucose. The mobile fraction of the cell wall is composed of ß-(1,3)-glucan, ß-(1,3)-(1,6)-glucan, ß-(1,6)-glucan, α-linked reducing and non-reducing ends and polymeric mannose. Together, these findings provide novel insights into the structural organization of the cell wall of the model basidiomycete S. commune that was previously based on destructive chemical and enzymatic analysis.

2.
J Am Chem Soc ; 140(29): 9154-9158, 2018 07 25.
Article in English | MEDLINE | ID: mdl-30003782

ABSTRACT

Understanding the 3-D distribution and nature of active sites in heterogeneous catalysts is critical to developing structure-function relationships. However, this is difficult to achieve in microporous materials as there is little relative z-contrast between active and inactive framework elements (e.g., Al, O, P, and Si), making them difficult to differentiate with electron microscopies. We have applied atom probe tomography (APT), currently the only nanometer-scale 3-D microscopy to offer routine light element contrast, to the methanol-to-hydrocarbons (MTH) catalyst SAPO-34, with Si as the active site, which may be present in the framework as either isolated Si species or clusters (islands) of Si atoms. 29Si solid-state NMR data on isotopically enriched and natural abundance materials are consistent with the presence of Si islands, and the APT results have been complemented with simulations to show the smallest detectable cluster size as a function of instrument spatial resolution and detector efficiency. We have identified significant Si-Si affinity in the materials, as well as clustering of coke deposited by the MTH reaction (13CH3OH used) and an affinity between Brønsted acid sites and coke. A comparison with simulations shows that the ultimate spatial resolution that can be attained by APT applied to molecular sieves is 0.5-1 nm. Finally, the observed 13C clusters are consistent with hydrocarbon pool mechanism intermediates that are preferentially located in regions of increased Brønsted acidity.

SELECTION OF CITATIONS
SEARCH DETAIL