Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
J Photochem Photobiol B ; 164: 123-131, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27665183

ABSTRACT

Photodynamic therapy (PDT) is well established as a clinical treatment modality for various diseases, including cancer and especially for the treatment of superficial tumors. However, one of the disadvantages of the photoactivatable molecules is their low absorbance in the optical window for photosensitizer excitation. The use of nanoparticles in photodynamic therapy can address this deficiency and improve treatment efficiency. Pdots are nano-sized particles, composed of conjugated chromophoric polymers. By mixing them with PEGylated phospholipids they can become soluble and stable colloids. They exhibit a broad absorption band with a strong and narrow emission band. In this study, we examined two types of Pdots (MEH-PPV and CN-PPV) with two different lengths of the PEGylated lipids coating, 350 and 2000. When a photosensitizer, such as mTHPC, comes in close contact with the amphiphilic coating of the Pdots, a very efficient fluorescence resonance energy transfer (FRET) occurs between the donor, the Pdots and the acceptor, the sensitizer. This process, together with the significant uptake of the Pdots-sensitizer pair by MCF-7 cancerous cells causes irreversible damage to the cells. This damage is greater when the Pdots are comprised from the CN-PPV polymer and coated with the PEG2000-PE lipid. Altogether, we demonstrate that implementing FRET energy transfer in the PDT protocol leads to quicker and more aggressive cell death, thus improving the efficacy of the photodynamic therapy.


Subject(s)
Cell Death , Fluorescence Resonance Energy Transfer/methods , Photochemotherapy , Cell Line, Tumor , Humans
2.
ACS Appl Mater Interfaces ; 7(38): 21107-14, 2015 Sep 30.
Article in English | MEDLINE | ID: mdl-26334672

ABSTRACT

Singlet oxygen ((1)O2) generated upon photostimulation of photosensitizer molecules is a highly reactive specie which is utilized in photodynamic therapy. Recent studies have shown that semiconductor nanoparticles can be used as donors in fluorescence resonance energy transfer (FRET) process to excite attached photosensitizer molecules. In these studies, their unique properties, such as low nanoscale size, long-term photostability, wide broad absorbance band, large absorption cross section, and narrow and tunable emission bands were used to provide advantages over the traditional methods to produce singlet oxygen. Previous studies that achieved this goal, however, showed some limitations, such as low FRET efficiency, poor colloidal stability, nonspecific interactions, and/or complex preparation procedure. In this work, we developed and characterized a novel system of semiconductor quantum rods (QRs) and the photosensitizer meso-tetra(hydroxyphenyl) chlorin (mTHPC), as a model system that produces singlet oxygen without these limitations. A simple two-step preparation method is shown; Hydrophobic CdSe/CdS QRs are solubilized in aqueous solutions by encapsulation with lecithin and PEGylated phospholipid (PEG-PL) of two lipid lengths: PEG350 or PEG2000. Then, the hydrophobic photosensitizer mTHPC, was intercalated into the new amphiphilic PEG-PL coating of the QR, providing a strong attachment to the nanoparticle without covalent linkage. These PEGylated QR (eQR)-mTHPC nanocomposites show efficient FRET processes upon light stimulation of the QR component which results in efficient production of singlet oxygen. The results demonstrate the potential for future use of this concept in photodynamic therapy schemes.


Subject(s)
Fluorescence Resonance Energy Transfer , Phospholipids/chemistry , Photosensitizing Agents/chemistry , Polyethylene Glycols/chemistry , Quantum Dots/chemistry , Fluorescence , Kinetics , Mesoporphyrins/chemistry , Nanocomposites/chemistry , Quantum Dots/ultrastructure , Singlet Oxygen/chemistry
3.
Phys Chem Chem Phys ; 17(17): 11412-22, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25853434

ABSTRACT

Pdots are a new type of nanoparticle which exhibit strong potential for future applications in biophysics and cell biology. They are composed of organic chromophoric polymers, whose surfaces can be modified with different amphiphilic polymers, such as PEGylated lipids to make them very stable as colloids in water. We demonstrate in this manuscript that the lipid nano-coating around the Pdot can bind very efficiently to amphiphilic molecules, such as photosensitizers e.g. meso-tetrahydroxyphenylchlorin (mTHPC). As a result the sensitizer is brought into very close contact with the cores of the Pdots, and resonance energy transfer from the core to the sensitizer is very efficient; in some cases it is close to 1. We show the spectroscopic properties of two types of Pdots; their sizes, which are in the 13-47 nm range, depend on the kind of polymer and the length of the PEGylated lipid chains that wrap it. We measured the efficiency of FRET by investigating the decrease in donor intensity or its lifetime upon binding with mTHPC. We also show the relative yields of singlet oxygen that are obtained via two pathways: by exciting the Pdots which transfer the energy to the attached sensitizer, or by exciting the sensitizer directly. This methodology could be used to enhance the use of a photosensitizer by employing both pathways in parallel.


Subject(s)
Fluorescence Resonance Energy Transfer , Lipids/chemistry , Mesoporphyrins/chemistry , Nanoparticles/chemistry , Photosensitizing Agents/chemistry , Mesoporphyrins/chemical synthesis , Molecular Structure , Particle Size , Singlet Oxygen/chemistry , Surface Properties , Time Factors
4.
Biomaterials ; 35(34): 9372-81, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25132603

ABSTRACT

The 5,10,15,20-tetrakis(1-methyl 4-pyridinio) porphyrins (TMPyP), a photosensitizer used for photodynamic therapy of cancers (PDT), were linked to carbon dots (CDots) to form the conjugates of CDot-TMPyP by the electrostatic force. The 415 nm emission band of CDots was well overlapped with the absorption band of TMPyP, so that the Cdots in conjugates can work as donor to transfer the energy to TMPyP moiety by fluorescence resonance energy transfer (FRET) with an FRET efficiency of 45%, determined by the fluorescence lifetime change between the free CDots and conjugated CDots. The two-photon absorption cross section (TPACS) of TMPyP is as low as 110 GM and the TMPyP thus be not suitable for two-photon PDT. Whereas the CDots have high TPACS, and their TPACS are excitation wavelength dependent with the maximum value of 15000 GM at 700 nm. Therefore, the conjugates of CDot-TMPyP were explored for two-photon excitation (TPE) PDT. The two-photon image of CDot-TMPyP in Hela cells was clearly seen under the excitation of a 700 nm femto-second (fs) laser. The singlet oxygen production of CDot-TMPyP was also much higher than that of TMPyP alone under TPE of a 700 nm fs laser. The in vitro PDT killing was further achieved with CDot-TMPyP by TPE of the 700 nm fs laser. Particularly herein the low power density of fs laser from unfocused laser beam was successfully used to carry out the TPE PDT, because of the high TPACS of CDots. These results demonstrate that the CDot-TMPyP conjugates are promising for TPE PDT and needed to investigate further.


Subject(s)
Carbon/chemistry , Fluorescence Resonance Energy Transfer/methods , Nanostructures/chemistry , Photons , HeLa Cells , Humans , Lasers , Microscopy, Electron, Transmission , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Porphyrins/pharmacology , Singlet Oxygen/chemistry
5.
Photochem Photobiol ; 90(4): 796-800, 2014.
Article in English | MEDLINE | ID: mdl-24588634

ABSTRACT

Singlet oxygen, created in photosensitization, peroxidizes unsaturated fatty acids of the membrane's lipids. This generates alcoholic or aldehyde groups at double bonds' breakage points. In a previous study, we examined the leakage of a K(+) -induced cross-membrane electric potential of liposomes that undergo photosensitization. The question remains to what extent peroxidized lipids can compromise the stability of the membrane. In this study, we studied the effect of the oxidatively modified lipids PGPC and ALDOPC in the membrane on its stability, by monitoring the membrane electric potential with the potentiometric dye DiSC(2)(5). As the content of the modified lipids increases the membrane becomes less stable, and even at just 2% of the modified lipids the membrane's integrity is affected, in respect to the leakage of ions through it. When the liposomes that contain the modified lipids undergo photosensitization by hematoporphyrin, the lipid bilayer becomes even more unstable and passage of ions is accelerated. We conclude that the existence of lipids with a shortened fatty acid that is terminated by a carboxylic acid or an aldehyde and more so when photosensitized damage occurs to unsaturated fatty acids in lecithin, add up to a critical alteration of the membrane, which becomes leaky to ions.


Subject(s)
Lipid Peroxidation , Lipids/chemistry , Liposomes/chemistry , Photochemical Processes , Ions , Membranes, Artificial
6.
Photochem Photobiol Sci ; 13(1): 38-47, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24173598

ABSTRACT

Photodynamic therapy (PDT) of cancer involves inflicting lethal damage to the cells of malignant tumors, primarily by singlet oxygen that is generated following light-absorption in a photosensitizer molecule. Dysfunction of cells is manifested in many ways, including peroxidation of cellular components, membrane rupture, depolarization of electric potentials, termination of mitochondrial activity, onset of apoptosis and necrosis and eventually cell lysis. These events do not necessarily occur in linear fashion and different types of damage to cell components occur, most probably, in parallel. In this report we measured the relative rates of damage to two cellular membranes: the plasma membrane and the mitochondrial membrane. We employed photosensitizers of diverse hydrophobicities and used different incubation procedures, which lead to their different intra-cellular localizations. We monitored the damage that was inflicted on these membranes, by employing optical probes of membrane integrity, in a multi-color FACS experiment. The potentiometric indicator JC-1 monitored the electric cross-membrane potential of the mitochondria and the fluorometric indicator Draq7 monitored the rupture of the plasma membrane. We show that the electric depolarization of the mitochondrial membrane and the damage to the enveloping plasma membrane proceed with different kinetics that reflect the molecular character and intracellular location of the sensitizer: PpIX that is synthesized in the cells from ALA causes rapid mitochondrial damage and very slow damage to the plasma membrane, while externally added PpIX has an opposite effect. The hydrophilic sensitizer HypS4 can be taken up by the cells by different incubation conditions, and these affect its intracellular location, and as a consequence either the plasma membrane or the mitochondria is damaged first. A similar correlation was found for additional extracellularly-provided photosensitizers HP and PpIX.


Subject(s)
Aminolevulinic Acid/pharmacology , Cell Membrane/drug effects , Membrane Potential, Mitochondrial/drug effects , Mitochondrial Membranes/drug effects , Photosensitizing Agents/pharmacology , Protoporphyrins/pharmacology , Anthracyclines , Benzimidazoles , Carbocyanines , Cell Line, Tumor , Cell Survival/drug effects , Flow Cytometry , Fluorescent Dyes , Humans , Hydrophobic and Hydrophilic Interactions , Kinetics , Light , Neurons/drug effects , Neurons/pathology
7.
Phys Chem Chem Phys ; 15(38): 15727-33, 2013 Oct 14.
Article in English | MEDLINE | ID: mdl-23575880

ABSTRACT

Gold nanorods (AuNRs) were conjugated with chlorin e6 (Ce6), a commonly used photosensitizer, to form AuNRs-Ce6 by electrostatic binding. Due to the strong surface plasmon resonance coupling, the fluorescence of conjugated Ce6 was enhanced 3-fold and the production of singlet oxygen was increased 1.4-fold. AuNRs-Ce6 were taken up by the HeLa and KB cell lines more easily than free Ce6, enhancing the intracellular delivery of Ce6. The increased cellular amount of Ce6 leads to a 3-fold more efficient photodynamic killing of these two cell lines. This demonstrates the potential of this approach to improve photodynamic detection and therapy of cancers.


Subject(s)
Gold/chemistry , Nanotubes/chemistry , Photosensitizing Agents/chemical synthesis , Porphyrins/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Chlorophyllides , HeLa Cells , Humans , Microscopy, Confocal , Neoplasms/drug therapy , Photochemotherapy , Photosensitizing Agents/therapeutic use , Photosensitizing Agents/toxicity , Singlet Oxygen/chemistry , Singlet Oxygen/metabolism , Static Electricity
8.
Photochem Photobiol ; 89(3): 619-24, 2013.
Article in English | MEDLINE | ID: mdl-23278678

ABSTRACT

There is evidence indicating that the cellular locus of PDT action by amphiphilic sensitizers are the cellular membranes. The photosensitization process causes oxidative damage to membrane components that can result in the cell's death. However, it was not yet established whether lipid oxidation can cause free passage of molecules through the membrane and, as a result, be the primary cause of the cell's death. In this work, we studied the effect of liposomes' lipid composition on the kinetics of the leakage of three fluorescent dyes, calcein, carboxyfluorescein and DTAF, which were trapped in the intraliposomal aqueous phase, after photosensitization with the photosensitizer deuteroporphyrin. We found that as the degree of fatty acid unsaturation increased, the photosensitized passage of these molecules through the lipid bilayer increased. We also found that the rate of leakage of these molecules was affected by their size and bulkiness as well as by their net electric charge. In liposomes that are composed of a lipid mixture similar to that of natural membranes, the observed passage of molecules through the membrane is slow. Thus, the photodynamic damage to lipids does not appear to be severe enough to be an immediate, primary cause of cell death in biological photosensitization.


Subject(s)
Deuteroporphyrins/chemistry , Liposomes/chemistry , Membrane Lipids/chemistry , Photosensitizing Agents/chemistry , Cell Membrane/chemistry , Cell Membrane Permeability , Diffusion , Fluoresceins/chemistry , Fluorescent Dyes/chemistry , Hydrophobic and Hydrophilic Interactions , Kinetics , Static Electricity
9.
Photochem Photobiol ; 89(1): 253-8, 2013.
Article in English | MEDLINE | ID: mdl-22827592

ABSTRACT

The azide anion is often used as a physical quencher of singlet oxygen, the important active intermediate in photosensitized oxidation. An observed effect of azide on the rate of a reaction is considered an indication to the involvement of singlet oxygen. In most biological photosensitizations, the light-absorbing sensitizer is located in a membrane or in an intracellular organelle, whereas azide is water soluble. The quenching it causes relies on a physical encounter with singlet oxygen during the latter's short lifetime. This can happen either if azide penetrates into the membrane's lipid phase or if singlet oxygen is intercepted when diffusing in the aqueous phase. We demonstrate in this article the difference, in liposomes' suspension, between the effect of azide when using a water-soluble and membrane-bound chemical targets of singlet oxygen, whereas this difference does not exist when micelles are used. We explain the difference on the population of sensitizer and target in the liposome vs micelle. We also show the effect that exists on azide quenching of singlet oxygen by electrically charged lipids in liposomes. This is a result of the accumulation or dilution of azide in the debye layer near the membranes' surface, due to the surface Gouy-Chapman potential.


Subject(s)
Azides/chemistry , Hematoporphyrins/chemistry , Liposomes/radiation effects , Photosensitizing Agents/chemistry , Singlet Oxygen/chemistry , Fatty Acids, Monounsaturated/chemistry , Hydrogen-Ion Concentration , Kinetics , Lecithins/chemistry , Light , Liposomes/chemistry , Micelles , Oxidation-Reduction , Quaternary Ammonium Compounds/chemistry , Solubility , Static Electricity , Suspensions/chemistry , Unithiol/chemistry , Water
10.
J Liposome Res ; 22(4): 306-18, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22799604

ABSTRACT

When phospholipids are vigorously dispersed in water, liposomes are formed. In the present study, we have explored the effect of intercalant concentration on various properties of unilamellar liposomes. Liposomes were sonically intercalated with vitamin E acetate (VitEAc) and hypericin (Hy) until no difference in light transmission was observed, which reflects the formation of liposomes of minimal diameter. Our studies indicate that the intercalant structure and concentration have an influence on the liposome diameter, which could be directly measured by cryogenic transmittance electronic microscopy. Thus, intercalated VitEAc substantially decreased the diameter of unilamellar dimyristoylphosphatidylcholine liposomes, whereas Hy did not. In addition, we followed peak intensities in the absorbance and fluorescence spectra of Hy as a function of intercalant concentration in the liposomal solution. Initially, the fluorescence intensity increased linearly with concentration; however, the curve then arched asymptotically, followed by a decrease in fluorescence at yet higher concentrations. Because the Hy monomer is the only species that emits fluorescence, we believe that the decrease of fluorescence intensity is the result of Hy aggregation.


Subject(s)
Liposomes , Phospholipids/chemistry , Microscopy, Electron, Transmission , Spectrum Analysis/methods
11.
Int J Pharm ; 430(1-2): 129-40, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22525077

ABSTRACT

Photosensitizing properties of 5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin (p-THPP) functionalized by covalent attachment of one chain of poly(ethylene glycol) (PEG) with a molecular weight of 350, 2000, or 5000 Da (p-THPP-PEG(350), p-THPP-PEG(2000), p-THPP-PEG(5000)) were studied in vitro. Dark and photo cytotoxicity of these photosensitizers delivered in solution or embedded in liposomes were evaluated on two cell lines: a human colorectal carcinoma cell line (HCT 116) and a prostate cancer cell line (DU 145), and compared with these treated with free p-THPP. The attachment of PEG chains results in the pronounced reduction of the dark cytotoxicity of the parent porphyrin. Cell viability tests have demonstrated that the phototoxicity of pegylated porphyrins is dependent on the length of PEG chain and p-THPP-PEG(2000) exhibited the highest photodynamic efficacy for both cell lines. The encapsulation into liposomes did not improve the PDT effect. However, the liposomal formulation of p-THPP-PEG(2000) showed a greater tendency to induce apoptosis in both cell lines than the parent or pegylated porphyrin delivered in solution. The colocalization of p-THPP, p-THPP-PEG(2000) and p-THPP-PEG(2000) enclosed in liposomes with fluorescent markers for lysosomes, mitochondria, endoplasmatic reticulum (ER) and Golgi apparatus (GA) was determined in the HCT 116 line. The p-THPP exhibited ubiquitous intracellular distribution with a preference for membranes: mitochondria, ER, GA, lysosomes and plasma membrane. Fluorescence of p-THPP-PEG(2000) was observed within the cytoplasm, with a stronger signal detected in membranous organelle: mitochondria, ER, GA and lysosomes. In contrast, p-THPP-PEG(2000) delivered in liposomes gave a distinct lysosomal pattern of localization.


Subject(s)
Colorectal Neoplasms/metabolism , Nanomedicine , Nanoparticles , Photochemotherapy/methods , Photosensitizing Agents/metabolism , Porphyrins/metabolism , Prostatic Neoplasms/metabolism , Apoptosis/drug effects , Biological Transport , Cell Survival/drug effects , Chemistry, Pharmaceutical , Colorectal Neoplasms/pathology , Flow Cytometry , HCT116 Cells , Humans , Kinetics , Liposomes , Male , Microscopy, Confocal , Molecular Weight , Organelles/metabolism , Photosensitizing Agents/chemistry , Polyethylene Glycols/chemistry , Porphyrins/chemistry , Prostatic Neoplasms/pathology
12.
Biochim Biophys Acta ; 1808(8): 2031-5, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21447321

ABSTRACT

Hematoporphyrin is being used as a photosensitizer in photodynamic therapy of tumors, as well as of other clinical cases. Many classes of tetrapyrroles, including hematoporphyrin, are partitioning quite easily into the external cytoplasmic membrane as the mechanism of cellular uptake. Several chemical and physical parameters of the membrane were studied for their effect on the extent of porphyrins' partitioning. In this manuscript we report, for the first time, a quantitative analysis of the effect of the membrane's surface electric potential on the partitioning. We prepared liposomes, as membrane models, composed on zwitterionic DMPC lipid, as well as DMPC liposomes that contain a small, varying fraction of negatively charged DMPS and positively charged DOTAP. We found that indeed the surface potential had a very strong effect on the binding constant of HP, which is negatively charged at the physiological pH that was used. The trend in the apparent binding constant can be formulated and fitted with the Gouy-Chapman model of surface potential. We found that the average concentration of HP within the aqueous shell that has a thickness of the Debye layer around the liposome is determining the extent of binding in the law of mass action.


Subject(s)
Cell Membrane/chemistry , Hematoporphyrins/chemistry , Liposomes , Membrane Lipids/chemistry , Photosensitizing Agents/chemistry , Binding Sites , Cell Membrane/metabolism , Dimyristoylphosphatidylcholine/chemistry , Fatty Acids, Monounsaturated/chemistry , Hematoporphyrins/metabolism , Hydrogen-Ion Concentration , Membrane Lipids/metabolism , Models, Biological , Models, Chemical , Phosphatidylserines/chemistry , Photosensitizing Agents/metabolism , Protein Binding , Quaternary Ammonium Compounds/chemistry , Spectrometry, Fluorescence , Surface Properties
13.
J Phys Chem B ; 114(31): 10097-104, 2010 Aug 12.
Article in English | MEDLINE | ID: mdl-20536150

ABSTRACT

Hydrophobic or amphiphilic tetrapyrrole sensitizers are taken up by cells and are usually located in cellular lipid membranes. Singlet oxygen is photogenerated by the sensitizer, and it diffuses in the membrane and causes oxidative damage to membrane components. This damage can occur to membrane lipids and to membrane-localized proteins. Depolarization of the Nernst electric potential on cells' membranes has been observed in cellular photosensitization, but it was not established whether lipid oxidation is a relevant factor leading to abolishing the resting potential of cells' membranes and to their death. In this work, we studied the effect of liposomes' lipid composition on the kinetics of hematoporphyrin-photosensitized dissipation of K(+)-diffusion electric potential that was generated across the membranes. We employed an electrochromic voltage-sensitive spectroscopic probe that possesses a high fluorescence signal response to the potential. We found a correlation between the structure and unsaturation of lipids and the leakage of the membrane, following photosensitization. As the extent of nonconjugated unsaturation of the lipids is increased from 1 to 6 double bonds, the kinetics of depolarization become faster. We also found that the kinetics of depolarization is affected by the percentage of the unsaturated lipids in the liposome: as the fraction of the unsaturated lipids increases, the leakage through the membrane is enhanced. When liposomes are composed of a lipid mixture similar to that of natural membranes and photosensitization is being carried out under usual photodynamic therapy (PDT) conditions, photodamage to the lipids is not likely to cause enhanced permeability of ions through the membrane, which would have been a mechanism that leads to cell death.


Subject(s)
Cell Membrane/metabolism , Liposomes/chemistry , Liposomes/metabolism , Membrane Lipids/chemistry , Photosensitizing Agents/metabolism , Diffusion , Fatty Acids, Unsaturated/chemistry , Fatty Acids, Unsaturated/metabolism , Kinetics , Lecithins/chemistry , Lecithins/metabolism , Membrane Lipids/metabolism , Membrane Potentials , Potassium/metabolism , Quinolinium Compounds/metabolism , Spectrometry, Fluorescence
14.
Photochem Photobiol ; 86(2): 410-7, 2010.
Article in English | MEDLINE | ID: mdl-20074089

ABSTRACT

We report the preparation of chiral oxygen atom-appended porphyrazines (pzs) as biomedical optical agents that absorb and emit in the near-IR wavelength range. These pzs take the form M[pz(A(4-n)B(n))], where "A" and "B" represent moieties appended to the pz's pyrrole entities, A = (2R,3R) 2,3-dimethyl-2,3-dimethoxy-1,4-diox-2-ene, B = beta,beta'-di-isopropoxybenzo, M is the incorporated metal ion (M = H(2), Zn), and n = 0, 1, 2 (-cis/-trans) and 3 (Scheme 1). When dissolved in polar media, H(2)[pz(trans-A(2)B(2))] 5a does not fluoresce and has a negligible quantum yield for singlet oxygen generation (capital EF, Cyrillic(Delta) = 0.074 +/- 0.001, methanol), as measured by the photo-oxidation of DMA. However, when sequestered in the nonpolar environment of a liposome, it displays strong NIR emission (lambda(max) = 705 nm, capital EF, Cyrillic(f) = 0.087) and an extremely high singlet oxygen quantum yield (capital EF, Cyrillic(Delta)-->1). Of this series, H(2)[pz(trans-A(2)B(2))] 5a is attractive as a potential optical probe, showing strongly fluorescent uptake by cells in culture, while 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide measurements of cell viability show no evidence of dark toxicity. This agent does show significant photoinduced toxicity suggesting that pzs such as 5a have promise as "theranostic" optical agents that can be visualized with fluorescence imaging while acting as a sensitizer for photodynamic therapy.


Subject(s)
Infrared Rays , Neoplasms/therapy , Photochemotherapy/methods , Porphyrins/chemical synthesis , Antineoplastic Agents , Cell Survival/drug effects , Cells, Cultured , Humans , Liposomes/pharmacology , Porphyrins/therapeutic use , Porphyrins/toxicity , Stereoisomerism
15.
Photochem Photobiol Sci ; 8(3): 354-61, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19255676

ABSTRACT

In this work we investigate the localization and photophysical properties of twelve synthetically derived chlorins in artificial membranes, with the goal of designing more effective photosensitizers for photodynamic therapy (PDT). The studied chlorins incorporate substituents of varying lipophilicity at the C(5)-meso-position (H to C(5)H(11)), while the C(13)- and C(17)-positions have carboxylate "anchoring" groups tethered to the tetrapyrrole by alkyl chains (CH(2))(n) (n = 1-3). It was found that as n increases, the chromophoric part of the molecule, and thus the point of generation of singlet oxygen, is located at a deeper position in the bilayer. The vertical insertion of the sensitizers was assessed by two fluorescence-quenching techniques: by iodide ions that come from the aqueous phase and by spin-probe-labeled phospholipids that are incorporated into the bilayer, using the parallax method. These results demonstrate that elongation of the side chains endows the modified molecules with a larger affinity for artificial membranes and also causes the tetrapyrrole ring to be localized deeper in the lipid membrane. This location leads to a higher effective quantum yield for the chemical reaction of singlet oxygen with its chemical target 9,10-dimethylanthracene (DMA).


Subject(s)
Membranes, Artificial , Photosensitizing Agents/chemistry , Porphyrins/chemistry , Anthracenes/chemistry , Iodides/chemistry , Kinetics , Membrane Fluidity , Photochemotherapy , Quantum Theory , Singlet Oxygen/chemistry , Spectrometry, Fluorescence
16.
Eur Biophys J ; 38(7): 847-55, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19330323

ABSTRACT

In previous studies, we demonstrated that elongation of side chains of several sensitizers endowed them with higher affinity for artificial and natural membranes and caused their deeper localization in membranes. In the present study, we employed eight hematoporphyrin and protoporphyrin analogs and four groups containing three chlorin analogs each, all synthesized with variable numbers of methylenes in their alkyl carboxylic chains. We show that these tetrapyrroles' affinity for bovine serum albumin (BSA) and their localization in the binding site are also modulated by chain lengths. The binding constants of the hematoporphyrins and protoporphyrins to BSA increased as the number of methylenes was increased. The binding of the chlorins depended on the substitution at the meso position opposite to the chains. The quenching of the sensitizers' florescence by external iodide ions decreased as the side chains became longer, indicating to deeper insertion of the molecules into the BSA binding pocket. To corroborate this conclusion, we studied the efficiency of photodamage caused to tryptophan in BSA upon illumination of the bound sensitizers. The efficiency was found to depend on the side-chain lengths of the photosensitizer. We conclude that the protein site that hosts these sensitizers accommodates different analogs at positions that differ slightly from each other. These differences are manifested in the ease of access of iodide from the external aqueous phase, and in the proximity of the photosensitizers to the tryptophan. In the course of this study, we developed the kinetic equations that have to be employed when the sensitizer itself is being destroyed.


Subject(s)
Albumins/metabolism , Hematoporphyrins/metabolism , Photosensitizing Agents/chemistry , Photosensitizing Agents/metabolism , Porphyrins/chemistry , Porphyrins/metabolism , Protoporphyrins/metabolism , Albumins/chemistry , Animals , Binding Sites , Cattle , Hematoporphyrins/chemistry , Humans , Oxygen/metabolism , Protein Binding , Protoporphyrins/chemistry , Spectrometry, Fluorescence , Tryptophan/metabolism
17.
Chem Phys Lipids ; 155(1): 38-42, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18606157

ABSTRACT

In this study we investigated, spectroscopically, the effect of electrolytes on the partitioning of hematoporphyrin IX (HP) and hypericin (Hy) into non-charged lipid vesicles. Our aim was to assess the salting-out effect of electrolytes on membrane-partitioning. We titrated aqueous solutions of HP and Hy with lecithin liposomes, at different concentrations of several monovalent and divalent electrolytes in the suspension. The partitioning constant of HP to lecithin liposomes increased from 3.3 (mL/mg) in water containing only 5mM buffer to 8.7 (mL/mg) at 0.36M KCl. KF had a similar effect. NaCl caused a 3-fold increase in the partitioning of Hy to liposomes. MgSO(4) and MgCl(2) also increased the partitioning of HP, by a factor of more than 4 and this occurred already at 0.03M concentration. We analyze the comparative effects of the electrolytes in relation to the Hofmeister series. The salting-out effect could be utilized to enhance the uptake of HP and Hy, and possibly other photosensitizers as well, by artificial and natural membranes.


Subject(s)
Electrolytes/chemistry , Liposomes/chemistry , Membranes/chemistry , Chemistry, Physical/methods , Hydrogen-Ion Concentration , Kinetics , Lecithins/chemistry , Lipids/chemistry , Models, Chemical , Photosensitizing Agents/pharmacology , Potassium Chloride/chemistry , Sodium Chloride/pharmacology , Solutions , Spectrophotometry, Ultraviolet/methods , Water/chemistry
18.
Photochem Photobiol Sci ; 7(3): 344-51, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18389152

ABSTRACT

Six amphiphilic silicon phthalocyanines (SiPc's) axially linked to a dimethylated amino alkyl group of varying length have been examined for their potential suitability as photosensitizers for photodynamic therapy (PDT). This group of molecules was chosen because the length of the axial ligand might place the chromophoric part of the molecule at different vertical depths in the membrane and possibly affect the extent of membrane localized damage caused by singlet oxygen. We tested the relative penetration depth of the SiPc groups in the membrane by the extent to which their fluorescence was quenched by external iodide ions. We also measured singlet oxygen quantum yields of the SiPc's in a liposome membrane, using the fluorescent target for singlet oxygen, 9,10-dimethylanthracene. The hydrophobicity parameters, LogP, were calculated and were also measured. Some correlation was found between them and Kb's, the binding constants for liposomes. The effect of the axial ligand's length is less striking than in similar cases with hematoporphyrins and protoporphyrins. We link this smaller effect with a bending of the linker chain that enables, sterically, a better positioning of the sensitizer molecules within the ordered lipid layer structure.


Subject(s)
Indoles/chemistry , Liposomes/chemistry , Organosilicon Compounds/chemistry , Photosensitizing Agents/chemistry , Anthracenes/chemistry , Binding Sites , Binding, Competitive , Fluorescence , Hydrophobic and Hydrophilic Interactions , Indoles/radiation effects , Iodides/chemistry , Ions/chemistry , Kinetics , Lasers , Ligands , Molecular Structure , Organosilicon Compounds/radiation effects , Oxygen/chemistry , Photochemistry , Photosensitizing Agents/radiation effects , Quantum Theory , Sensitivity and Specificity , Solubility , Spectrometry, Fluorescence/methods , Spectrophotometry, Ultraviolet/methods
19.
J Phys Chem B ; 112(10): 3268-76, 2008 Mar 13.
Article in English | MEDLINE | ID: mdl-18278897

ABSTRACT

We synthesized a series of analogues of 5,20-diphenyl-10,15-bis(4-carboxylatomethoxy)phenyl-21,23-dithiaporphyrin (I) as potential photosensitizers for photodynamic therapy (PDT). The photosensitizers differ in the length of the side chains that bind the carboxyl to the phenol at positions 10 and 15 of the thiaporphyrin. The spectroscopic, photophysical, and biophysical properties of these photosensitizers are reported. The structural changes have almost no effect on the excitation/emission spectra with respect to I's spectra or on singlet oxygen generation in MeOH. All of the photosensitizers have a very high, close to 1.00, singlet oxygen quantum yield in MeOH. On the contrary, singlet oxygen generation in liposomes was considerably affected by the structural change in the photosensitizers. The photosensitizers possessing short side chains (one and three carbons) showed high quantum yields of around 0.7, whereas the photosensitizers possessing longer side chains showed smaller quantum yield, down to 0.14 for compound X (possessing side-chain length of 10 carbons), all at 1 microM. Moreover a self-quenching process of singlet oxygen was observed, and the quantum yield decreased as the photosensitizer's concentration increased. We measured the binding constant of I to liposomes and found Kb = 23.3 +/- 1.6 (mg/mL)-1. All the other photosensitizers with longer side chains exhibited very slow binding to liposomes, which prevented us from assessing their Kb's. We carried out fluorescence resonance energy transfer (FRET) measurements to determine the relative depth in which each photosensitizer is intercalated in the liposome bilayer. We found that the longer the side chain the deeper the photosensitizer core is embedded in the bilayer. This finding suggests that the photosensitizers are bound to the bilayer with their acid ends close to the aqueous medium interface and their core inside the bilayer. We performed PDT with the dithiaporphyrins on U937 cells and R3230AC cells. We found that the dark toxicity of the photosensitizers with the longer side chain (X, VI, V) is significantly higher than the dark toxicity of sensitizers with shorter side chains (I, III, IV). Phototoxicity measurements showed the opposite direction; the photosensitizers with shorter side chains were found to be more phototoxic than those with longer side chains. These differences are attributed to the relationship between diffusion and endocytosis in each photosensitizer, which determines the location of the photosensitizer in the cell and hence its phototoxicity.


Subject(s)
Photosensitizing Agents/chemistry , Porphyrins/chemistry , Cell Survival , Fluorescence Resonance Energy Transfer , Humans , Liposomes/chemistry , Methanol , Molecular Structure , Photochemotherapy , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/toxicity , Porphyrins/toxicity , Singlet Oxygen/chemistry , Spectrophotometry , U937 Cells
20.
Photochem Photobiol ; 84(3): 764-73, 2008.
Article in English | MEDLINE | ID: mdl-18208451

ABSTRACT

Three novel classes of porphyrazine-like structures were synthesized to form modular structures in which lipophilicity and water solubility can be tuned. Subtle modification of solubility is an important criterion in selecting a compound for biological photosensitization. The general structure takes the form H2[pz(AnB4-n)], where the core is a porphyrazine (pz) group, A is a pyrrole ring with two sulfide linkages (SR moieties) and B is a pyrrole fused with a 4,7-bis(isopropyloxy)benzo group, with n=4, 3 and 2. These molecules possess their longest wavelength absorption band between 700 and 810 nm, hence laser beams of higher tissue penetration depth could be used to illuminate them in photodynamic therapy (PDT). Armed with absorption bands in the far-red and near-infrared (near-IR), and a capability to tune the solubility, these molecules could make for better sensitizers because of optimized uptake by lipidic membranes and better optical properties. We tested several derivatives of the A4, A3B and A2B2 structures for their singlet oxygen quantum yields in methanol and in liposomes, using 9,10-dimethyl anthracene (DMA) as a singlet oxygen target. Singlet oxygen quantum yields in liposomes ranged from 0.01 to 0.44, with the A2B2 group showing the most promise. In the binding assay to find the equilibrium binding constant, Kb, we detected fluorescence changes due to a change in environment. Peripheral long-chain moieties (the R group in the SR moieties) dominate lipid binding. These moieties range in the hydrophobicity that they induce from C8H17 and benzene, which rendered the molecule totally insoluble in water, to polyethylene glycol (PEG) and carboxylate groups, which imparted water solubility. Each molecule had between 4 and 8 such identical chains. Chains bearing an ether or ester link resulted in measurable equilibrium constants, with a higher Kb for ether substituents. Results for Kb ranged from 0.23 to 26.52 (mg mL(-1))(-1). A delicate balance exists between water solubility and good partitioning to membranes. In general, a higher oxygen-to-carbon ratio in the chains improves binding. Fewer chains and a centrally coordinated zinc ion further improve binding and singlet oxygen production.


Subject(s)
Liposomes/chemistry , Macrocyclic Compounds/chemistry , Porphyrins/chemistry , Singlet Oxygen/chemistry , Water/chemistry , Molecular Structure , Solubility , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...