Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Theranostics ; 12(9): 4348-4373, 2022.
Article in English | MEDLINE | ID: mdl-35673573

ABSTRACT

RATIONALE: PI3K/mTOR signaling is frequently upregulated in breast cancer making inhibitors of this pathway highly promising anticancer drugs. However, PI3K-inhibitors have a low therapeutic index. Therefore, finding novel combinatory treatment options represents an important step towards clinical implementation of PI3K pathway inhibition in breast cancer therapy. Here, we propose proteases as potential synergistic partners with simultaneous PI3K inhibition in breast cancer cells. METHODS: We performed mRNA expression studies and unbiased functional genetic synthetic lethality screens by a miR-E based knockdown system targeting all genome-encoded proteases, i.e. the degradome of breast cancer cells. Importantly theses RNA interference screens were done in combination with two PI3K pathway inhibitors. Protease hits were validated in human and murine breast cancer cell lines as well as in non-cancerous cells by viability and growth assays. RESULTS: The degradome-wide genetic screens identified 181 proteases that influenced susceptibility of murine breast cancer cells to low dose PI3K inhibition. Employing independently generated inducible knockdown cell lines we validated 12 protease hits in breast cancer cells. In line with the known tumor promoting function of these proteases we demonstrated Usp7 and Metap2 to be important for murine and human breast cancer cell growth and discovered a role for Metap1 in this context. Most importantly, we demonstrated that Usp7, Metap1 or Metap2 knockdown combined with simultaneous PI3K inhibition resulted in synergistic impairment of murine and human breast cancer cell growth Conclusion: We successfully established proteases as combinatory targets with PI3K inhibition in human and murine breast cancer cells. Usp7, Metap1 and Metap2 are synthetic lethal partners of simultaneous protease/PI3K inhibition, which may refine future breast cancer therapy.


Subject(s)
Breast Neoplasms , Phosphatidylinositol 3-Kinases , Aminopeptidases/genetics , Aminopeptidases/metabolism , Aminopeptidases/therapeutic use , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Humans , Mice , Peptide Hydrolases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Proto-Oncogene Proteins c-akt/metabolism , RNA Interference , Ubiquitin-Specific Peptidase 7/genetics
2.
Nat Commun ; 12(1): 5183, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34465776

ABSTRACT

Plasmablastic lymphoma (PBL) represents a rare and aggressive lymphoma subtype frequently associated with immunosuppression. Clinically, patients with PBL are characterized by poor outcome. The current understanding of the molecular pathogenesis is limited. A hallmark of PBL represents its plasmacytic differentiation with loss of B-cell markers and, in 60% of cases, its association with Epstein-Barr virus (EBV). Roughly 50% of PBLs harbor a MYC translocation. Here, we provide a comprehensive integrated genomic analysis using whole exome sequencing (WES) and genome-wide copy number determination in a large cohort of 96 primary PBL samples. We identify alterations activating the RAS-RAF, JAK-STAT, and NOTCH pathways as well as frequent high-level amplifications in MCL1 and IRF4. The functional impact of these alterations is assessed using an unbiased shRNA screen in a PBL model. These analyses identify the IRF4 and JAK-STAT pathways as promising molecular targets to improve outcome of PBL patients.


Subject(s)
Plasmablastic Lymphoma/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Gene Amplification , Gene Dosage , Gene Expression Profiling , Humans , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Janus Kinases/genetics , Janus Kinases/metabolism , Male , Middle Aged , Molecular Targeted Therapy , Plasmablastic Lymphoma/metabolism , Plasmablastic Lymphoma/mortality , Plasmablastic Lymphoma/therapy , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Translocation, Genetic , Exome Sequencing , Young Adult
3.
Oncogene ; 39(9): 1904-1913, 2020 02.
Article in English | MEDLINE | ID: mdl-31754210

ABSTRACT

Targeted expression of transgenes is essential for the accurate representation of human disease in in vivo models. Current approaches to generate conditional transgenic mouse models are cumbersome and not amenable to high-throughput analysis since they require de novo generation and characterization of genetically modified mice. Here we describe a new system for lineage-restricted expression of transgenes based on a retroviral vector incorporating a translational stop cassette flanked by loxP recombination sites. Conditional transgene expression in chimeric mice is achieved by retroviral infection and transplantation of hematopoietic stem cells (HSC) derived from transgenic mice expressing Cre-recombinase from a lineage-specific promoter. For validation, we directed expression of NPM-ALK, the fusion oncogene driving a subset of anaplastic large cell lymphoma (ALCL), to T-cells by infecting hematopoietic stem cells from Lck-Cre-transgenic mice with a retroviral construct containing the NPM-ALK cDNA preceded by a translational stop cassette. These mice developed T-cell lymphomas within 12-16 weeks, featuring increased expression of the ALCL hallmark antigen CD30 as well as other cytotoxic T-cell markers, similar to the human disease. The new model represents a versatile tool for the rapid analysis of gene function in a defined lineage or in a developmental stage in vivo.


Subject(s)
Ki-1 Antigen/metabolism , Lymphoma, Large-Cell, Anaplastic/pathology , Lymphoma, T-Cell/pathology , Protein Processing, Post-Translational , Protein-Tyrosine Kinases/metabolism , Animals , Apoptosis , Cell Proliferation , Female , Humans , Lymphoma, Large-Cell, Anaplastic/genetics , Lymphoma, Large-Cell, Anaplastic/metabolism , Lymphoma, T-Cell/genetics , Lymphoma, T-Cell/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Protein-Tyrosine Kinases/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
4.
Oncogene ; 38(8): 1324-1339, 2019 02.
Article in English | MEDLINE | ID: mdl-30659267

ABSTRACT

Copy number gains, point mutations and epigenetic silencing events are increasingly observed in genes encoding elements of the Ras/Raf/MEK/ERK signaling axis in human breast cancer. The three Raf kinases A-Raf, B-Raf, and Raf-1 have an important role as gatekeepers in ERK pathway activation and are often dysregulated by somatic alterations of their genes or by the aberrant activity of receptor tyrosine kinases (RTKs) and Ras-GTPases. B-Raf represents the most potent Raf isoform and a critical effector downstream of RTKs and RAS proteins. Aberrant RTK signaling is mimicked by the polyoma middle T antigen (PyMT), which activates various oncogenic signaling pathways, incl. the RAS/ERK axis, in a similar manner as RTKs in human breast cancer. Mammary epithelial cell directed expression of PyMT in mice by the MMTV-PyMT transgene induces mammary hyperplasia progressing over adenoma to metastatic breast cancer with an almost complete penetrance. To understand the functional role of B-Raf in this model for luminal type B breast cancer, we crossed MMTV-PyMT mice with animals that either lack B-Raf expression in the mammary gland or express the signaling impaired B-RafAVKA mutant. The AVKA mutation prevents phosphorylation of T599 and S602 in the B-Raf activation loop and thereby activation of the kinase by upstream signals. We demonstrate for the first time that B-Raf expression and activation is important for tumor initiation in vivo as well as for lung metastasis. Isogenic tumor cell lines generated from conditional Braf knock-out or knock-in mice displayed a reduction in EGF-induced ERK pathway activity as well as in proliferation and invasive growth in three-dimensional matrigel cultures. Our results suggest that B-Raf, which has been hardly studied in the context of breast cancer, represents a critical effector of the PyMT oncoprotein and invite for an assessment of its functional role in human breast cancer.


Subject(s)
Breast Neoplasms/genetics , Cell Transformation, Neoplastic/genetics , Mammary Neoplasms, Animal/genetics , Proto-Oncogene Proteins B-raf/genetics , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Disease Models, Animal , Disease Progression , Female , Gene Expression Regulation, Neoplastic , Humans , MAP Kinase Signaling System , Mammary Neoplasms, Animal/pathology , Mice , Mice, Knockout , Mutation , Proto-Oncogene Proteins A-raf/genetics , Proto-Oncogene Proteins B-raf/deficiency , Proto-Oncogene Proteins c-raf/genetics
5.
EMBO J ; 35(2): 143-61, 2016 Jan 18.
Article in English | MEDLINE | ID: mdl-26657898

ABSTRACT

Despite being mutated in cancer and RASopathies, the role of the activation segment (AS) has not been addressed for B-Raf signaling in vivo. Here, we generated a conditional knock-in mouse allowing the expression of the B-Raf(AVKA) mutant in which the AS phosphoacceptor sites T599 and S602 are replaced by alanine residues. Surprisingly, despite producing a kinase-impaired protein, the Braf(AVKA) allele does not phenocopy the lethality of Braf-knockout or paradoxically acting knock-in alleles. However, Braf(AVKA) mice display abnormalities in the hematopoietic system, a distinct facial morphology, reduced ERK pathway activity in the brain, and an abnormal gait. This phenotype suggests that maximum B-Raf activity is required for the proper development, function, and maintenance of certain cell populations. By establishing conditional murine embryonic fibroblast cultures, we further show that MEK/ERK phosphorylation and the immediate early gene response toward growth factors are impaired in the presence of B-Raf(AVKA). Importantly, alanine substitution of T599/S602 impairs the transformation potential of oncogenic non-V600E B-Raf mutants and a fusion protein, suggesting that blocking their phosphorylation could represent an alternative strategy to ATP-competitive inhibitors.


Subject(s)
Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Animals , Cell Proliferation/genetics , Cell Proliferation/physiology , Cells, Cultured , Enzyme Activation/genetics , Enzyme Activation/physiology , Female , MAP Kinase Signaling System/genetics , MAP Kinase Signaling System/radiation effects , Male , Mice , Mitogen-Activated Protein Kinase Kinases/metabolism , Models, Biological , Mutation , Phosphorylation , Signal Transduction/genetics , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...