Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Process Impacts ; 16(1): 65-73, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24296745

ABSTRACT

Oil spills in the deep-sea environment such as the 2010 Deep Water Horizon oil spill in the Gulf of Mexico release vast quantities of crude oil into the sea-surface environment. Various investigators have discussed the marine transport and fate of the oil into different environmental compartments (air, water, sediment, and biota). The transport of the oil into the atmosphere in these previous investigations has been limited to only evaporation, a volatility dependent pathway. In this work, we studied the aerosolization of oil spill matter via bursting bubbles as they occur during whitecaps in a laboratory aerosolization reactor. By evaluating the alkane content in oil mousse, crude oil, the gas phase, and particulate matter we clearly demonstrate that aerosolization via bursting bubbles is a solubility and volatility independent transport pathway for alkanes. The signature of alkane fractions in the native oil and aerosolized matter matched well especially for the less volatile alkanes (C20-C29). Scanning electron microscope interfaced with energy dispersive X-ray images identified the carbon fractions associated with salt particles of aerosols. Theoretical molecular dynamics simulations in the accompanying paper lend support to the observed propensity for alkanes at air-salt water interfaces of breaking bubbles and the produced droplets. The presence of a dispersant in the aqueous phase increased the oil ejection rate at the surface especially for the C20-C29 alkanes. The information presented here emphasizes the need to further study sea-spray aerosols as a possible transport vector for spilled oil in the sea surface environment.


Subject(s)
Aerosols/analysis , Air Pollutants/analysis , Models, Chemical , Petroleum/analysis , Seawater/chemistry , Water Pollutants, Chemical/analysis , Air Pollutants/chemistry , Particulate Matter/analysis , Petroleum Pollution , Water Pollutants, Chemical/chemistry
2.
Environ Sci Process Impacts ; 16(1): 53-64, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24296764

ABSTRACT

Potential of mean force (PMF) calculations and molecular dynamics (MD) simulations were performed to investigate the properties of oil n-alkanes [i.e., n-pentadecane (C15), n-icosane (C20) and n-triacontane (C30)], as well as several surfactant species [i.e., the standard anionic surfactant sodium dodecyl sulfate (SDS), and three model dispersants similar to the Tween and Span species present in Corexit 9500A] at air/salt water interfaces. This study was motivated by the 2010 Deepwater Horizon (DWH) oil spill, and our simulation results show that, from the thermodynamic point of view, the n-alkanes and the model dispersants have a strong preference to remain at the air/salt water interface, as indicated by the presence of deep free energy minima at these interfaces. The free energy minimum of these n-alkanes becomes deeper as their chain length increases, and as the concentration of surfactant species at the interface increases. The n-alkanes tend to adopt a flat orientation and form aggregates at the bare air/salt water interface. When this interface is coated with surfactants, the n-alkanes tend to adopt more tilted orientations with respect to the vector normal to the interface. These simulation results are consistent with the experimental findings reported in the accompanying paper [Ehrenhauser et al., Environ. Sci.: Processes Impacts 2013, in press, (DOI: 10.1039/c3em00390f)]. The fact that these long-chain n-alkanes show a strong thermodynamic preference to remain at the air/salt water interfaces, especially if these interfaces are coated with surfactants, makes these species very likely to adsorb at the surface of bubbles or droplets and be ejected to the atmosphere by sea surface processes such as whitecaps (breaking waves) and bubble bursting. Finally, the experimental finding that more oil hydrocarbons are ejected when Corexit 9500A is present in the system is consistent with the deeper free energy minima observed for the n-alkanes at the air/salt water interface at increasing concentrations of surfactant species.


Subject(s)
Aerosols/analysis , Air Pollutants/analysis , Petroleum Pollution/analysis , Petroleum/analysis , Seawater/chemistry , Surface-Active Agents/chemistry , Water Pollutants, Chemical/analysis , Air Pollutants/chemistry , Atmosphere/chemistry , Models, Chemical , Molecular Dynamics Simulation , Water Pollutants, Chemical/chemistry
3.
J Phys Chem A ; 117(21): 4436-43, 2013 May 30.
Article in English | MEDLINE | ID: mdl-23668770

ABSTRACT

Methyl salicylate (MeSA) is a green leaf volatile (GLV) compound that is emitted in significant amounts by plants, especially when they are under stress conditions. GLVs can then undergo chemical reactions with atmospheric oxidants, yielding compounds that contribute to the formation of secondary organic aerosols (SOAs). We investigated the adsorption of MeSA on atmospheric air/water interfaces at 298 K using thermodynamic integration (TI), potential of mean force (PMF) calculations, and classical molecular dynamics (MD) simulations. Our molecular models can reproduce experimental results of the 1-octanol/water partition coefficient of MeSA. A deep free energy minimum was found for MeSA at the air/water interface, which is mainly driven by energetic interactions between MeSA and water. At the interface, the oxygenated groups in MeSA tend to point toward the water side of the interface, with the aromatic group of MeSA lying farther away from water. Increases in the concentrations of MeSA lead to reductions in the height of the peaks in the MeSA-MeSA g(r) functions, a slowing down of the dynamics of both MeSA and water at the interface, and a reduction in the interfacial surface tension. Our results indicate that MeSA has a strong thermodynamic preference to remain at the air/water interface, and thus chemical reactions with atmospheric oxidants are more likely to take place at this interface, rather than in the water phase of atmospheric water droplets or in the gas phase.


Subject(s)
Atmosphere/chemistry , Plant Leaves/chemistry , Salicylates/chemistry , Air , Models, Molecular , Molecular Dynamics Simulation , Surface Properties , Water/chemistry
4.
Phys Chem Chem Phys ; 15(10): 3583-92, 2013 Mar 14.
Article in English | MEDLINE | ID: mdl-23381146

ABSTRACT

Green leaf volatiles (GLVs) are oxygenated hydrocarbons that are emitted by plants, especially under stress conditions such as mechanical damage and local weather changes. GLVs can react with photochemically-generated oxidants (e.g., OH radicals) in atmospheric water drops, and contribute to the formation of secondary organic aerosols (SOAs). Here we investigated the adsorption of a gas phase GLV, 2-methyl-3-buten-2-ol (MBO) and OH radicals on atmospheric air/water interfaces using classical molecular dynamics (MD) simulations and potential of mean force (PMF) calculations. Our models can reproduce experimental values of the free energy of hydration of MBO and ˙OH, as well as 1-octanol/water partition coefficients of MBO determined experimentally in this study. Both MBO and ˙OH have a strong thermodynamic incentive to remain at the air/water interface, with their density profiles overlapping significantly at the interface. These results suggest that chemical reactions between MBO and ˙OH are more likely to take place at the interface, rather than inside the bulk of water droplets or in the vapor phase. We found a significant number of contacts between MBO and ˙OH in our simulations, which could lead to reactions between these two species.

5.
J Environ Monit ; 14(10): 2566-79, 2012 Oct 26.
Article in English | MEDLINE | ID: mdl-22968314

ABSTRACT

Polycyclic aromatic hydrocarbons (PAH) are ubiquitous pollutants in the atmosphere, predominantly known for their toxicity. Although there has been substantial work on the atmospheric degradation of PAH, little is known about how the presence of atmospheric droplets (e.g., a fog cloud) affects the fate of PAH. In order to assess the processing of PAH and their corresponding oxidation products during a fog event, two field-sampling campaigns in Fresno, CA and Davis, CA were conducted. The simultaneous evaluation of concentrations of the PAH and oxygenated polycyclic aromatic compounds (OPAC) in the gas phase, particulate matter and fog water droplets before, during and after fog allows for the characterization of transformative and transport processes in a fog cloud. By tracking the ratio of OPAC to PAH in the individual atmospheric phases, two major polycyclic aromatic compounds-processing pathways can be identified: (i) the dissolution of OPAC from particulate matter and (ii) the uptake and oxidation of PAH in the fog water droplets. Wet deposition steadily decreases the pollutant concentration in the fog cloud droplets during a fog event; however, uptake and concentration via evaporative water loss upon the dissipation of a fog cloud cause an increase in the atmospheric pollutant concentration.


Subject(s)
Air Pollutants/analysis , Atmosphere/chemistry , Environmental Monitoring/methods , Polycyclic Aromatic Hydrocarbons/analysis , Weather , Air Pollution/statistics & numerical data , California , Cities
6.
Rapid Commun Mass Spectrom ; 24(9): 1351-7, 2010 May 15.
Article in English | MEDLINE | ID: mdl-20391608

ABSTRACT

Atmospheric-pressure photoionization (APPI) mass spectrometry benefits from the addition of an ionization-enhancing dopant such as benzene. A passive dopant-delivery system has therefore been designed for use with the orthogonal APPI source within a commercial liquid chromatographic instrument with mass spectrometric detector. By providing the dopant in the gas phase, the newly designed equipment avoids mixing problems and other difficulties associated with liquid dopant addition. The system is a simple and durable design that can reliably deliver virtually any dopant with sufficient vapor pressure in the temperature range of 20 to 120 degrees C. At the optimum dopant flow rate (10% of the mobile phase flow rate) for high-performance liquid chromatography with narrow-bore (2.1 mm) columns, the system allows for uninterrupted routine analysis for up to two weeks. The performance of the device has been evaluated with benzene as dopant and with a test mixture consisting of four polycyclic aromatic hydrocarbons (PAH): naphthalene, 9H-fluorene, anthracene, and phenanthrene. All four PAH can be detected with an excellent signal-to-noise ratio in the scanning mode and a limit of detection down to 0.42 ng on column (51 pg in single-ion monitoring mode). The concentration calibration curves are linear over a range of three orders of magnitude, with correlation coefficients greater than 0.99. The utilization of benzene as dopant not only increases the sensitivity significantly - 20-fold, compared with dopant-free operation - but the low m/z values of the background ions observed also allow for the effective quantitative and qualitative analysis of PAH.

7.
J Phys Chem A ; 110(29): 9161-8, 2006 Jul 27.
Article in English | MEDLINE | ID: mdl-16854029

ABSTRACT

The adsorption and photochemical reaction of naphthalene vapor at the air-water interface of water films (22 microm and 450 microm) were studied in a horizontal flow reactor. Experiments were conducted in the regime where gas-phase mass transfer resistance did not limit the uptake. The equilibrium uptake was dependent on water film thickness only below 1 microm. Bulk water-air and air-to-interface partition constants were estimated from the experiments. The equilibrium partition constant between the water film and air decreased with increasing temperature. Photochemical reaction products were isolated in the water film after exposure to UV light. Four main oxygenated products were identified (1,3-indandione, 1(3H)-isobenzofuranone (phthalide), 2H-1-benzopyran-2-one (coumarin), and 1-naphthol). The initial rates of product formation were 46 to 154% larger for the thin film (22 microm) compared to both a thick film (450 microm) and bulk aqueous phase photooxidation. The atmospheric implications of reactions in water films are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...