Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 291(39): 20417-26, 2016 09 23.
Article in English | MEDLINE | ID: mdl-27493205

ABSTRACT

Transglutaminase from Streptomyces mobaraensis (MTG) is an important enzyme for cross-linking and modifying proteins. An intrinsic substrate of MTG is the dispase autolysis-inducing protein (DAIP). The amino acid sequence of DAIP contains 5 potential glutamines and 10 lysines for MTG-mediated cross-linking. The aim of the study was to determine the structure and glutamine cross-linking sites of the first physiological MTG substrate. A production procedure was established in Escherichia coli BL21 (DE3) to obtain high yields of recombinant DAIP. DAIP variants were prepared by replacing four of five glutamines for asparagines in various combinations via site-directed mutagenesis. Incorporation of biotin cadaverine revealed a preference of MTG for the DAIP glutamines in the order of Gln-39 ≫ Gln-298 > Gln-345 ∼ Gln-65 ≫ Gln-144. In the structure of DAIP the preferred glutamines do cluster at the top of the seven-bladed ß-propeller. This suggests a targeted cross-linking of DAIP by MTG that may occur after self-assembly in the bacterial cell wall. Based on our biochemical and structural data of the first physiological MTG substrate, we further provide novel insight into determinants of MTG-mediated modification, specificity, and efficiency.


Subject(s)
Bacterial Proteins/metabolism , Streptomyces/metabolism , Transglutaminases/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Escherichia coli/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Streptomyces/chemistry , Streptomyces/genetics , Transglutaminases/chemistry , Transglutaminases/genetics
2.
PLoS One ; 11(2): e0149145, 2016.
Article in English | MEDLINE | ID: mdl-26886195

ABSTRACT

Streptomyces mobaraensis DSM 40847 secretes transglutaminase that cross-links proteins via γ-glutamyl-ε-lysine isopeptide bonds. Characterized substrates are inhibitory proteins acting against various serine, cysteine and metalloproteases. In the present study, the bacterial secretome was examined to uncover additional transglutaminase substrates. Fractional ethanol precipitation of the exported proteins at various times of culture growth, electrophoresis of the precipitated proteins, and sequencing of a 39 kDa protein by mass spectrometry revealed the novel beta-lactamase Sml-1. As indicated by biotinylated probes, Sml-1, produced in E. coli, exhibits glutamine and lysine residues accessible for transglutaminase. The chromogenic cephalosporin analogue, nitrocefin, was hydrolyzed by Sml-1 with low velocity. The obtained Km and kcat values of the recombinant enzyme were 94.3±1.8 µM and 0.39±0.03 s(-1), respectively. Penicillin G and ampicillin proved to be weak inhibitors of nitrocefin hydrolysis (Ki of 0.1 mM and 0.18 mM). Negligible influence of metals on ß-lactamase activity ruled out that Sml-1 is a Zn2+-dependent class B beta-lactamase. Rather, sequence motifs such as SITK, YSN, and HDG forming the active core in a hypothetical structure may be typical for class C beta-lactamases. Based on the results, we assume that the novel transglutaminase substrate ensures undisturbed growth of aerial hyphae in Streptomyces mobaraensis by trapping and inactivating hostile beta-lactam antibiotics.


Subject(s)
Cross-Linking Reagents/metabolism , Streptomyces/enzymology , Transglutaminases/metabolism , beta-Lactamases/metabolism , Amino Acid Motifs , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Biotinylation , Catalytic Domain , Escherichia coli/metabolism , Extracellular Space/metabolism , Kinetics , Models, Molecular , Molecular Sequence Data , Molecular Weight , Recombinant Proteins/biosynthesis , Substrate Specificity , beta-Lactamases/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...