Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phys Rev E ; 109(3-1): 034115, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38632770

ABSTRACT

Molecular motors fulfill critical functions within all living beings. Understanding their underlying working principles is therefore of great interest. Here we develop a simple model inspired by the two-component biomolecular motor F_{o}-F_{1} ATP synthase. We analyze its energetics and characterize information flows between the machine's components. At maximum output power we find that information transduction plays a minor role for free-energy transduction. However, when the two components are coupled to different environments (e.g., when in contact with heat baths at different temperatures), we show that information flow becomes a resource worth exploiting to maximize free-energy transduction. Our findings suggest that real-world powerful and efficient information engines could be found in machines whose components are subjected to fluctuations of different strength, since in this situation the benefit gained from using information for work extraction can outweigh the costs of information generation.

2.
Phys Rev Lett ; 131(5): 057101, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37595211

ABSTRACT

Information engines can convert thermal fluctuations of a bath at temperature T into work at rates of order k_{B}T per relaxation time of the system. We show experimentally that such engines, when in contact with a bath that is out of equilibrium, can extract much more work. We place a heavy, micron-scale bead in a harmonic potential that ratchets up to capture favorable fluctuations. Adding a fluctuating electric field increases work extraction up to ten times, limited only by the strength of the applied field. Our results connect Maxwell's demon with energy harvesting and demonstrate that information engines in nonequilibrium baths can greatly outperform conventional engines.

3.
Phys Rev Lett ; 129(13): 130601, 2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36206430

ABSTRACT

We have experimentally realized an information engine consisting of an optically trapped, heavy bead in water. The device raises the trap center after a favorable "up" thermal fluctuation, thereby increasing the bead's average gravitational potential energy. In the presence of measurement noise, poor feedback decisions degrade its performance; below a critical signal-to-noise ratio, the engine shows a phase transition and cannot store any gravitational energy. However, using Bayesian estimates of the bead's position to make feedback decisions can extract gravitational energy at all measurement noise strengths and has maximum performance benefit at the critical signal-to-noise ratio.

4.
Phys Rev E ; 104(4-1): 044122, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34781582

ABSTRACT

Understanding the connections between information and thermodynamics has been among the most visible applications of stochastic thermodynamics. While recent theoretical advances have established that the second law of thermodynamics sets limits on information-to-energy conversion, it is currently unclear to what extent real systems can achieve the predicted theoretical limits. Using a simple model of an information engine that has recently been experimentally implemented, we explore the limits of information-to-energy conversion when an information engine's benefit is limited to output energy that can be stored. We find that restricting the engine's output in this way can limit its ability to convert information to energy. Nevertheless, a feedback control that inputs work can allow the engine to store energy at the highest achievable rate. These results sharpen our theoretical understanding of the limits of real systems that convert information to energy.

5.
Proc Natl Acad Sci U S A ; 118(20)2021 May 18.
Article in English | MEDLINE | ID: mdl-33972432

ABSTRACT

Information-driven engines that rectify thermal fluctuations are a modern realization of the Maxwell-demon thought experiment. We introduce a simple design based on a heavy colloidal particle, held by an optical trap and immersed in water. Using a carefully designed feedback loop, our experimental realization of an "information ratchet" takes advantage of favorable "up" fluctuations to lift a weight against gravity, storing potential energy without doing external work. By optimizing the ratchet design for performance via a simple theory, we find that the rate of work storage and velocity of directed motion are limited only by the physical parameters of the engine: the size of the particle, stiffness of the ratchet spring, friction produced by the motion, and temperature of the surrounding medium. Notably, because performance saturates with increasing frequency of observations, the measurement process is not a limiting factor. The extracted power and velocity are at least an order of magnitude higher than in previously reported engines.

6.
Phys Rev E ; 103(2-1): 022140, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33735999

ABSTRACT

The excess work required to drive a stochastic system out of thermodynamic equilibrium through a time-dependent external perturbation is directly related to the amount of entropy produced during the driving process, allowing excess work and entropy production to be used interchangeably to quantify dissipation. Given the common intuition of biological molecular machines as internally communicating work between components, it is tempting to extend this correspondence to the driving of one component of an autonomous system by another; however, no such relation between the internal excess work and entropy production exists. Here we introduce the "transduced additional free-energy rate" between strongly coupled subsystems of an autonomous system, which is analogous to the excess power in systems driven by an external control parameter that receives no feedback from the system. We prove that this is a relevant measure of dissipation-in that it equals the steady-state entropy production rate due to the downstream subsystem-and demonstrate its advantages with a simple model system.

7.
Phys Rev E ; 102(3-1): 032105, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33075986

ABSTRACT

We study the finite-time erasure of a one-bit memory consisting of a one-dimensional double-well potential, with each well encoding a memory macrostate. We focus on setups that provide full control over the form of the potential-energy landscape and derive protocols that minimize the average work needed to erase the bit over a fixed amount of time. We allow for cases where only some of the information encoded in the bit is erased. For systems required to end up in a local-equilibrium state, we calculate the minimum amount of work needed to erase a bit explicitly, in terms of the equilibrium Boltzmann distribution corresponding to the system's initial potential. The minimum work is inversely proportional to the duration of the protocol. The erasure cost may be further reduced by relaxing the requirement for a local-equilibrium final state and allowing for any final distribution compatible with constraints on the probability to be in each memory macrostate. We also derive upper and lower bounds on the erasure cost.

8.
Phys Rev Lett ; 125(10): 100602, 2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32955336

ABSTRACT

We study the thermodynamic cost associated with the erasure of one bit of information over a finite amount of time. We present a general framework for minimizing the average work required when full control of a system's microstates is possible. In addition to exact numerical results, we find simple bounds proportional to the variance of the microscopic distribution associated with the state of the bit. In the short-time limit, we get a closed expression for the minimum average amount of work needed to erase a bit. The average work associated with the optimal protocol can be up to a factor of 4 smaller relative to protocols constrained to end in local equilibrium. Assessing prior experimental and numerical results based on heuristic protocols, we find that our bounds often dissipate an order of magnitude less energy.

9.
Phys Rev E ; 99(1-1): 012118, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30780203

ABSTRACT

We consider the dynamics of a microswimmer and show that they can be approximated by active Brownian motion. The swimmer is modeled by coupled overdamped Langevin equations with periodic driving. We compare the energy dissipation of the real swimmer to that of the active Brownian motion model, finding that the latter can massively underestimate the complete dissipation. This discrepancy is related to the inability to infer the full dissipation from partial observation of the complete system. We introduce an efficiency that measures how much of the dissipated energy is spent on forward propulsion.

10.
Phys Rev E ; 96(4-1): 042129, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29347633

ABSTRACT

Systems with interacting degrees of freedom play a prominent role in stochastic thermodynamics. Our aim is to use the concept of detached path probabilities and detached entropy production for bipartite Markov processes and elaborate on a series of special cases including measurement-feedback systems, sensors, and hidden Markov models. For these special cases we show that fluctuation theorems involving the detached entropy production recover known results which have been obtained separately before. Additionally, we show that the fluctuation relation for the detached entropy production can be used in model selection for data stemming from a hidden Markov model. We discuss the relation to previous approaches including those which use information flow or learning rate to quantify the influence of one subsystem on the other. In conclusion, we present a complete framework with which to find fluctuation relations for coupled systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...