Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 28(24): 36055-36069, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33379709

ABSTRACT

We propose and investigate the performance of integrated photonic isolators based on non-reciprocal mode conversion facilitated by unidirectional, traveling acoustic waves. A triply-guided waveguide system on-chip, comprising two optical modes and an electrically-driven acoustic mode, facilitates the non-reciprocal mode conversion and is combined with spatial mode filters to create the isolator. The co-guided and co-traveling arrangement enables isolation with no additional optical loss, without magnetic-optic materials, and with low power consumption. The approach is theoretically evaluated with simulations predicting over 20 dB of isolation and 2.6 dB of insertion loss with a 370 GHz optical bandwidth and 1 cm device length. The isolator uses only 1 mW of electrical drive power, an improvement of 1-3 orders of magnitude over the state of the art. The electronic drive and lack of magneto-optic materials suggest the potential for straightforward integration with drive circuits, including in monolithic CMOS electronic-photonic platforms, enabling a fully contained 'black box' optical isolator with two optical ports and DC electrical power.

2.
Opt Lett ; 45(11): 3005-3008, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32479444

ABSTRACT

We demonstrate ring and racetrack resonators with Qs of 3.8 to 7.5 million and 100 MHz bandwidth racetrack resonator filters, implemented in a thick silicon-on-insulator foundry platform that features a 3 µm thick device layer. We show that special racetrack resonators (with weakly guiding straight sections that transition to strongly confining bends) implemented in this platform can be preferable to rings for applications such as integrated microwave-photonic signal processing that require filters with sub-GHz bandwidth, tens of GHz of free spectral range (FSR), and a compact footprint for dense system-on-chip integration. We demonstrate ring resonators with 7.5×106 intrinsic Q, but limited FSR of 5.1 GHz and a taxing footprint of 21mm2 due to a large 2.6 mm bend-loss-limited radius. In comparison, we demonstrate two racetrack resonator designs with intrinsic Qs of 3.8×106 and 4.3×106, larger respective FSRs of 11.6 GHz and 7.9 GHz, and less than 1/20th the area of the ring resonator. Using racetrack resonators, we implemented a four-channel, 100 MHz wide passband filter bank with 4.2 to 5.4 dB insertion loss to drop ports.

3.
Opt Express ; 28(1): 788-815, 2020 Jan 06.
Article in English | MEDLINE | ID: mdl-32119000

ABSTRACT

We propose an on-chip triply resonant electro-optic modulator architecture for RF-to-optical signal conversion and provide a detailed theoretical analysis of the optimal "circuit-level" device geometries and their performance limits. The designs maximize the RF-optical conversion efficiency through simultaneous resonant enhancement of the RF drive signal, a continuous-wave (CW) optical pump, and the generated optical sideband. The optical pump and sideband are resonantly enhanced in respective supermodes of a two-coupled-cavity optical resonator system, while the RF signal can be enhanced in addition by an LC circuit formed by capacitances of the optical resonator active regions and (integrated) matching inductors. We show that such designs can offer 15-50 dB improvement in conversion efficiency over conventional microring modulators. In the proposed configurations, the photon lifetime (resonance linewidth) limits the instantaneous RF bandwidth of the electro-optic response but does not limit its central RF frequency. The latter is set by the coupling strength between the two coupled cavities and is not subject to the photon lifetime constraint inherent to conventional singly resonant microring modulators. This feature enables efficient operation at high RF carrier frequencies without a reduction in efficiency commonly associated with the photon lifetime limit and accounts for 10-30 dB of the total improvement. Two optical configurations of the modulator are proposed: a "basic" configuration with equal Q-factors in both supermodes, most suitable for narrowband RF signals, and a "generalized" configuration with independently tailored supermode Q-factors that supports a wider instantaneous bandwidth. A second significant 5-20 dB gain in modulation efficiency is expected from RF drive signal enhancement by integrated LC resonant matching, leading to the total expected improvement of 15-50 dB. Previously studied triply-resonant modulators, with coupled longitudinal [across the free spectral range (FSR)] modes, have large resonant mode volume for typical RF frequencies, which limits the interaction between the optical and RF fields. In contrast, the proposed modulators support maximally tightly confined resonant modes, with strong coupling between the mode fields, which increases and maintains high device efficiency across a range of RF frequencies. The proposed modulator architecture is compact, efficient, capable of modulation at high RF carrier frequencies and can be applied to any cavity design or modulation mechanism. It is also well suited to moderate Q, including silicon, implementations, and may be enabling for future CMOS RF-electronic-photonic systems on chip.

4.
Opt Express ; 26(3): 2462-2477, 2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29401786

ABSTRACT

The efficiency of optical sideband generation with a microring resonator modulator as a function of modulator parameters is studied taking into account the photon dynamics inside the resonator. The best achievable modulation efficiency is determined for any choice of the resonator intrinsic quality factor, and analytic solutions for the optimum modulator parameters, namely the coupling coefficient and the detuning between the frequencies of the input laser light and the microring resonance, are provided. This analysis is carried out both for a narrowband RF signal, in which case the modulator is optimized for the center frequency of this signal, and for wideband signals, when high conversion efficiency over a wide range of RF frequencies is desired. The obtained results are expected to be useful coherent optical links, direct detection RF receivers, and optical wavelength converters.

5.
Opt Express ; 21(12): 14251-61, 2013 Jun 17.
Article in English | MEDLINE | ID: mdl-23787614

ABSTRACT

A photonic threshold comparator is presented. A step-like electrical-to-optical (E/O) response is obtained by employing Fourier series synthesis in which a set of sine-wave responses of different amplitudes and phases are superimposed according to the Fourier series representation of a square-wave. The proposed comparator does not rely on optical material non-linearity; rather it consists of multimode interference (MMI) couplers and phase shifters.


Subject(s)
Refractometry/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Surface Plasmon Resonance/instrumentation , Equipment Design , Equipment Failure Analysis , Systems Integration
6.
Opt Express ; 21(3): 3793-9, 2013 Feb 11.
Article in English | MEDLINE | ID: mdl-23481835

ABSTRACT

It is shown that two mutually uncoupled microresonators in series can adequately cover the entire I-Q space and render the realization of QAM signals possible. This approach is based on the independent optimization of each microresonator for amplitude and phase modulation respectively. Generation of 16 quadrature amplitude modulation is demonstrated by means of simulation.


Subject(s)
Micro-Electrical-Mechanical Systems/instrumentation , Optical Devices , Equipment Design , Equipment Failure Analysis , Miniaturization
SELECTION OF CITATIONS
SEARCH DETAIL
...