Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Physiol ; 140(3): 584-92, 1989 Sep.
Article in English | MEDLINE | ID: mdl-2528552

ABSTRACT

Confluent cultures of human endothelial cells deposit into extracellular matrix (ECM) distinct heparan sulfate proteoglycans (HSPG) which modulate acidic fibroblast growth factor's (aFGF) ability to stimulate human endothelial cell mitogenic capacity. Extracellular matrix 35S-HSPG were isolated from cultures metabolically labelled with Na235SO4 by DEAE-Sepharose, Sepharose CL-4B, and aFGF-Affi-Gel 15 column chromatography and identified by resistance to chondroitinase ABC and sensitivity to nitrous acid. Fifty to sixty percent of the 35S-HSPG deposited into ECM do not bind aFGF. The bound 35S-HSGP (40-50% of the total counts applied) eluted from the aFGF-Affi-Gel column after the addition of buffer containing 2 M NaCl. aFGF-binding and aFGF-nonbinding 35S-HSPG were individually pooled and further purified by Sepharose CL-4B column chromatography. 35S-HSPG which bind aFGF, designated HSPGP, were 100-fold superior to heparin in augmenting the mitogenic efficacy of aFGF in sparse proliferating cultures. In contrast, however, 35S-HSPG, which did not bind aFGF, designated HSPG1, inhibited aFGF-stimulated proliferation in both sparse and subconfluent endothelial cell cultures. The majority of the biological activity of both aFGF-potentiating HSPGP and aFGF-inhibitory HSPG1 was contained in the glycosaminoglycan chains released by alkaline borohydride treatment of intact HSPGP or HSPG1, respectively. 3H-Core protein derived from HSPGP or HSPG1 contained only minor biological activity. The ability of heparitinase or heparinase (Flavobacterium heparinum) to abolish biological activity differed, depending upon the HSPG tested, also suggested that these are two distinct HSPGs.


Subject(s)
Chondroitin Sulfate Proteoglycans/physiology , Endothelium, Vascular/cytology , Extracellular Matrix/physiology , Fibroblast Growth Factors/pharmacology , Glycosaminoglycans/physiology , Heparitin Sulfate/physiology , Proteoglycans/physiology , Cell Division/drug effects , Chondroitin Sulfate Proteoglycans/classification , Chondroitin Sulfate Proteoglycans/pharmacology , Chromatography, Affinity , Drug Synergism , Fibroblast Growth Factors/metabolism , Growth Inhibitors , Heparan Sulfate Proteoglycans , Heparitin Sulfate/classification , Heparitin Sulfate/pharmacology , Humans , Structure-Activity Relationship , Viral Core Proteins/analysis
2.
Endocrinology ; 122(2): 689-93, 1988 Feb.
Article in English | MEDLINE | ID: mdl-3338415

ABSTRACT

Genetically obese Zucker fatty rats require two autosomal recessive genes (fa/fa) to express the obese phenotype. The obese Zucker rat (fa/fa) has decreased total and free serum T3 concentrations, but normal serum T4 concentrations, compared to those in their lean littermates. To elucidate the mechanism of these differences, we measured the MCR and production rate (PR) of T4 and T3 in the three genotypes of 4-month-old male Zucker rats (Fa/Fa, Fa/fa, and fa/fa). In addition, 5'-deiodinase activity in liver, kidney, and brown adipose tissue homogenates was determined. T4 MCRs were equivalent in all three genotypes, but a decreased T3 MCR was seen in Fa/fa and fa/fa rats. An additive effect of the fa gene was noted with respect to the decrease in T3 MCR (Fa/Fa, 42.0 +/- 1.5; Fa/fa, 38.7 +/- 2.4; fa/fa, 34.7 +/- 3.4 ml/h; P less than 0.05). Whole body T4 PRs were equal in all three genotypes, but the T3 PR was decreased in the fa/fa rat by 25% compared to that in the homozygous lean rats (15.7 +/- 2.1 vs. 21.2 +/- 2.4 ng/h; P less than 0.005). Liver and kidney 5'-deiodinase activities were decreased in the fa/fa rat by 34% (P less than 0.005) and 20% (P less than 0.01), respectively. Brown adipose tissue and pituitary 5'-deiodinase activity were similar in all three genotypes. These results show a reduction in T3, but not T4, MCR in obese Zucker rats. Whole body T3 production and type I 5'-deiodinase activity were decreased in the obese (fa/fa) rats. These results suggest that decreased T4 to T3 conversion is responsible for the decreased T3 production rate in the fatty rat and may contribute to its obesity.


Subject(s)
Obesity/blood , Rats, Mutant Strains/blood , Rats, Zucker/blood , Triiodothyronine/blood , Animals , Body Weight , Eating , Genotype , Iodide Peroxidase/metabolism , Male , Metabolic Clearance Rate , Obesity/genetics , Rats , Rats, Zucker/genetics , Reference Values , Thyroxine/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...