Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 5944, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013852

ABSTRACT

Loss-of-function mutations in the homotrimeric serine protease HTRA1 cause cerebral vasculopathy. Here, we establish independent approaches to achieve the functional correction of trimer assembly defects. Focusing on the prototypical R274Q mutation, we identify an HTRA1 variant that promotes trimer formation thus restoring enzymatic activity in vitro. Genetic experiments in Htra1R274Q mice further demonstrate that expression of this protein-based corrector in trans is sufficient to stabilize HtrA1-R274Q and restore the proteomic signature of the brain vasculature. An alternative approach employs supramolecular chemical ligands that shift the monomer-trimer equilibrium towards proteolytically active trimers. Moreover, we identify a peptidic ligand that activates HTRA1 monomers. Our findings open perspectives for tailored protein repair strategies.


Subject(s)
High-Temperature Requirement A Serine Peptidase 1 , High-Temperature Requirement A Serine Peptidase 1/metabolism , High-Temperature Requirement A Serine Peptidase 1/genetics , Animals , Humans , Mice , Protein Conformation , Protein Multimerization , HEK293 Cells , Brain/metabolism , Brain/pathology , Mutation , Loss of Function Mutation
2.
Microbiol Spectr ; 11(3): e0359222, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37071007

ABSTRACT

The envelope stress response (ESR) of Gram-negative enteric bacteria senses fluctuations in nutrient availability and environmental changes to avert damage and promote survival. It has a protective role toward antimicrobials, but direct interactions between ESR components and antibiotic resistance genes have not been demonstrated. Here, we report interactions between a central regulator of ESR viz., the two-component signal transduction system CpxRA (conjugative pilus expression), and the recently described mobile colistin resistance protein (MCR-1). Purified MCR-1 is specifically cleaved within its highly conserved periplasmic bridge element, which links its N-terminal transmembrane domain with the C-terminal active-site periplasmic domain, by the CpxRA-regulated serine endoprotease DegP. Recombinant strains harboring cleavage site mutations in MCR-1 are either protease resistant or degradation susceptible, with widely differing consequences for colistin resistance. Transfer of the gene encoding a degradation-susceptible mutant to strains that lack either DegP or its regulator CpxRA restores expression and colistin resistance. MCR-1 production in Escherichia coli imposes growth restriction in strains lacking either DegP or CpxRA, effects that are reversed by transactive expression of DegP. Excipient allosteric activation of the DegP protease specifically inhibits growth of isolates carrying mcr-1 plasmids. As CpxRA directly senses acidification, growth of strains at moderately low pH dramatically increases both MCR-1-dependent phosphoethanolamine (PEA) modification of lipid A and colistin resistance levels. Strains expressing MCR-1 are also more resistant to antimicrobial peptides and bile acids. Thus, a single residue external to its active site induces ESR activity to confer resilience in MCR-1-expressing strains to commonly encountered environmental stimuli, such as changes in acidity and antimicrobial peptides. Targeted activation of the nonessential protease DegP can lead to the elimination of transferable colistin resistance in Gram-negative bacteria. IMPORTANCE The global presence of transferable mcr genes in a wide range of Gram-negative bacteria from clinical, veterinary, food, and aquaculture environments is disconcerting. Its success as a transmissible resistance factor remains enigmatic, because its expression imposes fitness costs and imparts only moderate levels of colistin resistance. Here, we show that MCR-1 triggers regulatory components of the envelope stress response, a system that senses fluctuations in nutrient availability and environmental changes, to promote bacterial survival in low pH environments. We identify a single residue within a highly conserved structural element of mcr-1 distal to its catalytic site that modulates resistance activity and triggers the ESR. Using mutational analysis, quantitative lipid A profiling and biochemical assays, we determined that growth in low pH environments dramatically increases colistin resistance levels and promotes resistance to bile acids and antimicrobial peptides. We exploited these findings to develop a targeted approach that eliminates mcr-1 and its plasmid carriers.


Subject(s)
Colistin , Escherichia coli Proteins , Colistin/pharmacology , Lipid A , Anti-Bacterial Agents/pharmacology , Escherichia coli , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Plasmids , Peptide Hydrolases/pharmacology , Drug Resistance, Bacterial/genetics , Microbial Sensitivity Tests
3.
Prog Retin Eye Res ; 96: 101154, 2023 09.
Article in English | MEDLINE | ID: mdl-36513584

ABSTRACT

Despite comprehensive research efforts over the last decades, the pathomechanisms of age-related macular degeneration (AMD) remain far from being understood. Large-scale genome wide association studies (GWAS) were able to provide a defined set of genetic aberrations which contribute to disease risk, with the strongest contributors mapping to distinct regions on chromosome 1 and 10. While the chromosome 1 locus comprises factors of the complement system with well-known functions, the role of the 10q26-locus in AMD-pathophysiology remains enigmatic. 10q26 harbors a cluster of three functional genes, namely PLEKHA1, ARMS2 and HTRA1, with most of the AMD-associated genetic variants mapping to the latter two genes. High linkage disequilibrium between ARMS2 and HTRA1 has kept association studies from reliably defining the risk-causing gene for long and only very recently the genetic risk region has been narrowed to ARMS2, suggesting that this is the true AMD gene at this locus. However, genetic associations alone do not suffice to prove causality and one or more of the 14 SNPs on this haplotype may be involved in long-range control of gene expression, leaving HTRA1 and PLEKHA1 still suspects in the pathogenic pathway. Both, ARMS2 and HTRA1 have been linked to extracellular matrix homeostasis, yet their exact molecular function as well as their role in AMD pathogenesis remains to be uncovered. The transcriptional regulation of the 10q26 locus adds an additional level of complexity, given, that gene-regulatory as well as epigenetic alterations may influence expression levels from 10q26 in diseased individuals. Here, we provide a comprehensive overview on the 10q26 locus and its three gene products on various levels of biological complexity and discuss current and future research strategies to shed light on one of the remaining enigmatic spots in the AMD landscape.


Subject(s)
Macular Degeneration , Serine Endopeptidases , Humans , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Genome-Wide Association Study , Proteins/genetics , Proteins/metabolism , Macular Degeneration/genetics , Macular Degeneration/metabolism , Gene Expression Regulation , Polymorphism, Single Nucleotide , Genotype , Genetic Predisposition to Disease
4.
Nat Commun ; 13(1): 3055, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35650266

ABSTRACT

Melanoma is a highly plastic tumor characterized by dynamic interconversion of different cell identities depending on the biological context. Melanoma cells with high expression of the H3K4 demethylase KDM5B (JARID1B) rest in a slow-cycling, yet reversible persister state. Over time, KDM5Bhigh cells can promote rapid tumor repopulation with equilibrated KDM5B expression heterogeneity. The cellular identity of KDM5Bhigh persister cells has not been studied so far, missing an important cell state-directed treatment opportunity in melanoma. Here, we have established a doxycycline-titratable system for genetic induction of permanent intratumor expression of KDM5B and screened for chemical agents that phenocopy this effect. Transcriptional profiling and cell functional assays confirmed that the dihydropyridine 2-phenoxyethyl 4-(2-fluorophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa-hydro-quinoline-3-carboxylate (termed Cpd1) supports high KDM5B expression and directs melanoma cells towards differentiation along the melanocytic lineage and to cell cycle-arrest. The high KDM5B state additionally prevents cell proliferation through negative regulation of cytokinetic abscission. Moreover, treatment with Cpd1 promoted the expression of the melanocyte-specific tyrosinase gene specifically sensitizing melanoma cells for the tyrosinase-processed antifolate prodrug 3-O-(3,4,5-trimethoxybenzoyl)-(-)-epicatechin (TMECG). In summary, our study provides proof-of-concept for a dual hit strategy in melanoma, in which persister state-directed transitioning limits tumor plasticity and primes melanoma cells towards lineage-specific elimination.


Subject(s)
Melanoma , Monophenol Monooxygenase , Cell Line, Tumor , Cell Proliferation/genetics , Humans , Melanocytes/metabolism , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology
5.
J Proteome Res ; 21(8): 1829-1841, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35654412

ABSTRACT

Virtual screening of protein-protein and protein-peptide interactions is a challenging task that directly impacts the processes of hit identification and hit-to-lead optimization in drug design projects involving peptide-based pharmaceuticals. Although several screening tools designed to predict the binding affinity of protein-protein complexes have been proposed, methods specifically developed to predict protein-peptide binding affinity are comparatively scarce. Frequently, predictors trained to score the affinity of small molecules are used for peptides indistinctively, despite the larger complexity and heterogeneity of interactions rendered by peptide binders. To address this issue, we introduce PPI-Affinity, a tool that leverages support vector machine (SVM) predictors of binding affinity to screen datasets of protein-protein and protein-peptide complexes, as well as to generate and rank mutants of a given structure. The performance of the SVM models was assessed on four benchmark datasets, which include protein-protein and protein-peptide binding affinity data. In addition, we evaluated our model on a set of mutants of EPI-X4, an endogenous peptide inhibitor of the chemokine receptor CXCR4, and on complexes of the serine proteases HTRA1 and HTRA3 with peptides. PPI-Affinity is freely accessible at https://protdcal.zmb.uni-due.de/PPIAffinity.


Subject(s)
Peptides , Proteins , Drug Design , Peptides/chemistry , Protein Binding , Proteins/metabolism , Support Vector Machine
6.
Proc Natl Acad Sci U S A ; 119(14): e2113520119, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35349341

ABSTRACT

SignificanceClassic serine proteases are synthesized as inactive precursors that are proteolytically processed, resulting in irreversible activation. We report an alternative and reversible mechanism of activation that is executed by an inactive protease. This mechanism involves a protein complex between the serine protease HTRA1 and the cysteine protease calpain 2. Surprisingly, activation is restricted as it improves the proteolysis of soluble tau protein but not the dissociation and degradation of its amyloid fibrils, a task that free HTRA1 is efficiently performing. These data exemplify a challenge for protein quality control proteases in the clearing of pathogenic fibrils and suggest a potential for unexpected side effects of chemical modulators targeting PDZ or other domains located at a distance to the active site.


Subject(s)
Calpain , Serine Endopeptidases , Amyloid/metabolism , Calpain/metabolism , High-Temperature Requirement A Serine Peptidase 1/chemistry , Proteolysis , Serine Endopeptidases/metabolism , Serine Proteases/metabolism
7.
Brain ; 144(9): 2670-2682, 2021 10 22.
Article in English | MEDLINE | ID: mdl-34626176

ABSTRACT

White matter hyperintensities (WMH) are among the most common radiological abnormalities in the ageing population and an established risk factor for stroke and dementia. While common variant association studies have revealed multiple genetic loci with an influence on their volume, the contribution of rare variants to the WMH burden in the general population remains largely unexplored. We conducted a comprehensive analysis of this burden in the UK Biobank using publicly available whole-exome sequencing data (n up to 17 830) and found a splice-site variant in GBE1, encoding 1,4-alpha-glucan branching enzyme 1, to be associated with lower white matter burden on an exome-wide level [c.691+2T>C, ß = -0.74, standard error (SE) = 0.13, P = 9.7 × 10-9]. Applying whole-exome gene-based burden tests, we found damaging missense and loss-of-function variants in HTRA1 (frequency of 1 in 275 in the UK Biobank population) to associate with an increased WMH volume (P = 5.5 × 10-6, false discovery rate = 0.04). HTRA1 encodes a secreted serine protease implicated in familial forms of small vessel disease. Domain-specific burden tests revealed that the association with WMH volume was restricted to rare variants in the protease domain (amino acids 204-364; ß = 0.79, SE = 0.14, P = 9.4 × 10-8). The frequency of such variants in the UK Biobank population was 1 in 450. The WMH volume was brought forward by ∼11 years in carriers of a rare protease domain variant. A comparison with the effect size of established risk factors for WMH burden revealed that the presence of a rare variant in the HTRA1 protease domain corresponded to a larger effect than meeting the criteria for hypertension (ß = 0.26, SE = 0.02, P = 2.9 × 10-59) or being in the upper 99.8% percentile of the distribution of a polygenic risk score based on common genetic variants (ß = 0.44, SE = 0.14, P = 0.002). In biochemical experiments, most (6/9) of the identified protease domain variants resulted in markedly reduced protease activity. We further found EGFL8, which showed suggestive evidence for association with WMH volume (P = 1.5 × 10-4, false discovery rate = 0.22) in gene burden tests, to be a direct substrate of HTRA1 and to be preferentially expressed in cerebral arterioles and arteries. In a phenome-wide association study mapping ICD-10 diagnoses to 741 standardized Phecodes, rare variants in the HTRA1 protease domain were associated with multiple neurological and non-neurological conditions including migraine with aura (odds ratio = 12.24, 95%CI: 2.54-35.25; P = 8.3 × 10-5]. Collectively, these findings highlight an important role of rare genetic variation and the HTRA1 protease in determining WMH burden in the general population.


Subject(s)
Brain/diagnostic imaging , Calcium-Binding Proteins/genetics , EGF Family of Proteins/genetics , Exome Sequencing/methods , High-Temperature Requirement A Serine Peptidase 1/genetics , White Matter/diagnostic imaging , Female , HEK293 Cells , Humans , Male , Middle Aged , United Kingdom/epidemiology
8.
J Am Chem Soc ; 142(40): 17024-17038, 2020 10 07.
Article in English | MEDLINE | ID: mdl-32926779

ABSTRACT

Broad-spectrum antivirals are powerful weapons against dangerous viruses where no specific therapy exists, as in the case of the ongoing SARS-CoV-2 pandemic. We discovered that a lysine- and arginine-specific supramolecular ligand (CLR01) destroys enveloped viruses, including HIV, Ebola, and Zika virus, and remodels amyloid fibrils in semen that promote viral infection. Yet, it is unknown how CLR01 exerts these two distinct therapeutic activities. Here, we delineate a novel mechanism of antiviral activity by studying the activity of tweezer variants: the "phosphate tweezer" CLR01, a "carboxylate tweezer" CLR05, and a "phosphate clip" PC. Lysine complexation inside the tweezer cavity is needed to antagonize amyloidogenesis and is only achieved by CLR01. Importantly, CLR01 and CLR05 but not PC form closed inclusion complexes with lipid head groups of viral membranes, thereby altering lipid orientation and increasing surface tension. This process disrupts viral envelopes and diminishes infectivity but leaves cellular membranes intact. Consequently, CLR01 and CLR05 display broad antiviral activity against all enveloped viruses tested, including herpesviruses, Measles virus, influenza, and SARS-CoV-2. Based on our mechanistic insights, we potentiated the antiviral, membrane-disrupting activity of CLR01 by introducing aliphatic ester arms into each phosphate group to act as lipid anchors that promote membrane targeting. The most potent ester modifications harbored unbranched C4 units, which engendered tweezers that were approximately one order of magnitude more effective than CLR01 and nontoxic. Thus, we establish the mechanistic basis of viral envelope disruption by specific tweezers and establish a new class of potential broad-spectrum antivirals with enhanced activity.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Bridged-Ring Compounds/pharmacology , Organophosphates/pharmacology , Viral Envelope Proteins/drug effects , Acid Phosphatase/chemistry , Acid Phosphatase/metabolism , Amyloid/antagonists & inhibitors , Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , Arginine/chemistry , Betacoronavirus/drug effects , Bridged-Ring Compounds/chemistry , Cell Membrane/chemistry , Cell Membrane/drug effects , Cell Membrane/virology , HIV Infections/drug therapy , HIV-1/drug effects , Humans , Lipids/chemistry , Lysine/chemistry , Magnetic Resonance Spectroscopy , Organophosphates/chemistry , SARS-CoV-2 , Seminal Vesicle Secretory Proteins/chemistry , Seminal Vesicle Secretory Proteins/metabolism , Structure-Activity Relationship , Viral Envelope Proteins/metabolism , Zika Virus/drug effects
9.
Proc Natl Acad Sci U S A ; 117(3): 1414-1418, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31907318

ABSTRACT

Startling reports described the paradoxical triggering of the human mitogen-activated protein kinase pathway when a small-molecule inhibitor specifically inactivates the BRAF V600E protein kinase but not wt-BRAF. We performed a conceptual analysis of the general phenomenon "activation by inhibition" using bacterial and human HtrA proteases as models. Our data suggest a clear explanation that is based on the classic biochemical principles of allostery and cooperativity. Although substoichiometric occupancy of inhibitor binding sites results in partial inhibition, this effect is overrun by a concomitant activation of unliganded binding sites. Therefore, when an inhibitor of a cooperative enzyme does not reach saturating levels, a common scenario during drug administration, it may cause the contrary of the desired effect. The implications for drug development are discussed.


Subject(s)
Allosteric Site , Antineoplastic Agents/pharmacology , Heat-Shock Proteins/antagonists & inhibitors , High-Temperature Requirement A Serine Peptidase 1/antagonists & inhibitors , Periplasmic Proteins/antagonists & inhibitors , Protease Inhibitors/pharmacology , Allosteric Regulation , Antineoplastic Agents/chemistry , Escherichia coli , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/metabolism , High-Temperature Requirement A Serine Peptidase 1/chemistry , High-Temperature Requirement A Serine Peptidase 1/metabolism , Humans , Periplasmic Proteins/chemistry , Periplasmic Proteins/metabolism , Protease Inhibitors/chemistry , Protein Binding , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism
10.
Nat Prod Rep ; 37(2): 163-174, 2020 02 26.
Article in English | MEDLINE | ID: mdl-31451830

ABSTRACT

Covering: 1989 up to 2019 Ahp-cyclodepsipeptides (also known as Ahp-containing cyclodepsipeptides, cyanopeptolins, micropeptins, microginines, and lyngbyastatins, and by many other names) are a family of non-ribosomal peptide synthesis (NRPS)-derived natural products with potent serine protease inhibitory properties. Here, we review their isolation and structural elucidation from natural sources as well as studies of their biosynthesis, molecular mode of action, and use in drug discovery efforts. Accordingly, this summary aims to provide a comprehensive overview of the current state-of-the-art Ahp-cyclodepsipeptide research.


Subject(s)
Depsipeptides/chemistry , Depsipeptides/pharmacology , Oligopeptides/chemistry , Biological Products/chemistry , Biological Products/pharmacology , Depsipeptides/biosynthesis , Depsipeptides/chemical synthesis , Molecular Structure , Oligopeptides/metabolism , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/pharmacology
11.
ACS Chem Biol ; 15(1): 262-271, 2020 01 17.
Article in English | MEDLINE | ID: mdl-31742997

ABSTRACT

The interaction between the adapter protein 14-3-3σ and transcription factor p53 is important for preserving the tumor-suppressor functions of p53 in the cell. A phosphorylated motif within the C-terminal domain (CTD) of p53 is key for binding to the amphipathic groove of 14-3-3. This motif is unique among 14-3-3 binding partners, and the precise dynamics of the interaction is not yet fully understood. Here, we investigate this interaction at the molecular level by analyzing the binding of different length p53 CTD peptides to 14-3-3σ using ITC, SPR, NMR, and MD simulations. We observed that the propensity of the p53 peptide to adopt turn-like conformation plays an important role in the binding to the 14-3-3σ protein. Our study contributes to elucidate the molecular mechanism of the 14-3-3-p53 binding and provides useful insight into how conformation properties of a ligand influence protein binding.


Subject(s)
14-3-3 Proteins/chemistry , Peptide Fragments/chemistry , Tumor Suppressor Protein p53/chemistry , Amino Acid Sequence , Binding Sites , Magnetic Resonance Spectroscopy , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Structure-Activity Relationship , Surface Plasmon Resonance , Thermodynamics
12.
EMBO Rep ; 20(10): e48014, 2019 10 04.
Article in English | MEDLINE | ID: mdl-31432621

ABSTRACT

The autophagic clearance of damaged lysosomes by lysophagy involves extensive modification of the organelle with ubiquitin, but the underlying ubiquitination machinery is still poorly characterized. Here, we use an siRNA screening approach and identify human UBE2QL1 as a major regulator of lysosomal ubiquitination, lysophagy, and cell survival after lysosomal damage. UBE2QL1 translocates to permeabilized lysosomes where it associates with damage sensors, ubiquitination targets, and lysophagy effectors. UBE2QL1 knockdown reduces ubiquitination and accumulation of the critical autophagy receptor p62 and abrogates recruitment of the AAA-ATPase VCP/p97, which is essential for efficient lysophagy. Crucially, it affects association of LC3B with damaged lysosomes indicating that autophagosome formation was impaired. Already in unchallenged cells, depletion of UBE2QL1 leads to increased lysosomal damage, mTOR dissociation from lysosomes, and TFEB activation pointing to a role in lysosomal homeostasis. In line with this, mutation of the homologue ubc-25 in Caenorhabditis elegans exacerbates lysosome permeability in worms lacking the lysosome stabilizing protein SCAV-3/LIMP2. Thus, UBE2QL1 coordinates critical steps in the acute endolysosomal damage response and is essential for maintenance of lysosomal integrity.


Subject(s)
Autophagy , Endosomes/metabolism , Lysosomes/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Adenosine Triphosphatases , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Cell Survival , Endosomes/ultrastructure , Galectins/metabolism , HeLa Cells , Humans , Lysine/metabolism , Lysosomes/ultrastructure , Microtubule-Associated Proteins/metabolism , Nuclear Proteins , Permeability , RNA, Small Interfering/metabolism , Sequestosome-1 Protein/metabolism , Ubiquitin/metabolism , Ubiquitination , Ubiquitins/metabolism
13.
ChemMedChem ; 14(11): 1074-1078, 2019 06 05.
Article in English | MEDLINE | ID: mdl-30945468

ABSTRACT

Despite the availability of hundreds of antibiotic drugs, infectious diseases continue to remain one of the most notorious health issues. In addition, the disparity between the spread of multidrug-resistant pathogens and the development of novel classes of antibiotics exemplify an important unmet medical need that can only be addressed by identifying novel targets. Herein we demonstrate, by the development of the first in vivo active DegS inhibitors based on a pyrazolo[1,5-a]-1,3,5-triazine scaffold, that the serine protease DegS and the cell envelope stress-response pathway σE represent a target for generating antibiotics with a novel mode of action. Moreover, DegS inhibition is synergistic with well-established membrane-perturbing antibiotics, thereby opening promising avenues for rational antibiotic drug design.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli/drug effects , Serine Proteinase Inhibitors/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Dose-Response Relationship, Drug , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Serine Proteinase Inhibitors/chemical synthesis , Serine Proteinase Inhibitors/chemistry , Structure-Activity Relationship
14.
J Am Soc Mass Spectrom ; 30(1): 16-23, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30062477

ABSTRACT

Native top-down mass spectrometry (MS) and ion mobility spectrometry (IMS) were applied to characterize the interaction of a molecular tweezer assembly modulator, CLR01, with tau, a protein believed to be involved in a number of neurodegenerative disorders, including Alzheimer's disease. The tweezer CLR01 has been shown to inhibit aggregation of amyloidogenic polypeptides without toxic side effects. ESI-MS spectra for different forms of tau protein (full-length, fragments, phosphorylated, etc.) in the presence of CLR01 indicate a primary binding stoichiometry of 1:1. The relatively high charging of the protein measured from non-denaturing solutions is typical of intrinsically disordered proteins, such as tau. Top-down mass spectrometry using electron capture dissociation (ECD) is a tool used to determine not only the sites of post-translational modifications but also the binding site(s) of non-covalent interacting ligands to biomolecules. The intact protein and the protein-modulator complex were subjected to ECD-MS to obtain sequence information, map phosphorylation sites, and pinpoint the sites of inhibitor binding. The ESI-MS study of intact tau proteins indicates that top-down MS is amenable to the study of various tau isoforms and their post-translational modifications (PTMs). The ECD-MS data point to a CLR01 binding site in the microtubule-binding region of tau, spanning residues K294-K331, which includes a six-residue nucleating segment PHF6 (VQIVYK) implicated in aggregation. Furthermore, ion mobility experiments on the tau fragment in the presence of CLR01 and phosphorylated tau reveal a shift towards a more compact structure. The mass spectrometry study suggests a picture for the molecular mechanism of the modulation of protein-protein interactions in tau by CLR01. Graphical Abstract ᅟ.


Subject(s)
Bridged-Ring Compounds/metabolism , Ion Mobility Spectrometry/methods , Organophosphates/metabolism , Spectrometry, Mass, Electrospray Ionization/methods , tau Proteins/chemistry , tau Proteins/metabolism , Binding Sites , Bridged-Ring Compounds/chemistry , Hydrogen-Ion Concentration , Organophosphates/chemistry , Phosphorylation
15.
Rapid Commun Mass Spectrom ; 32(19): 1659-1667, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30062799

ABSTRACT

RATIONALE: Mass spectrometry (MS) is an invaluable tool for the analysis of proteins. However, the sheer amount of data generated in MS studies demands dedicated data-processing tools that are efficient and require minimal user intervention. METHODS: Utilities for Mass Spectrometry Analysis of Proteins (UMSAP) is a graphical user interface designed for efficient post-processing of MS result files. The software is written in Tcl/Tk and can be used in Windows, OS X or Linux. No third party programs or libraries are required. Currently, UMSAP can process data obtained from proteolytic degradation experiments and generates graphical outputs allowing a straightforward interpretation of statistically relevant results. RESULTS: UMSAP is used here to analyze the proteolytic degradation of glycerophosphoryl diester phosphodiesterase GlpQ by the protein quality control protease DegP. Mass spectrometry was used to monitor proteolysis over time in the absence and presence of a peptidic allosteric activator of DegP. The software's output clearly shows the increased proteolytic activity of DegP in the presence of the activating peptide, identifies statistically significant products of the proteolysis and offers valuable insights into substrate specificity. CONCLUSIONS: Utilities for Mass Spectrometry Analysis of Proteins is an open-source software designed for efficient post-processing of large datasets obtained by MS analyses of proteins. In addition, the modular architecture of the software allows easy incorporation of new modules to analyze various experimental mass spectrometry setups.


Subject(s)
Mass Spectrometry/methods , Proteins/analysis , Proteomics/methods , Software , Databases, Protein , Models, Molecular
16.
Chemistry ; 24(48): 12500-12504, 2018 Aug 27.
Article in English | MEDLINE | ID: mdl-29932252

ABSTRACT

Bioactive natural products are important starting points for developing chemical tools for biological research. For elucidating their bioactivity profile, biological systems with concise complexity such as cell culture systems are frequently used, whereas unbiased investigations in more complex multicellular systems are only rarely explored. Here, we demonstrate with the natural product Rotihibin A and the plant research model system Arabidopsis thaliana that unbiased transcriptional profiling enables a rapid, label-free, and compound economic evaluation of a natural product's bioactivity profile in a complex multicellular organism. To this end, we established a chemical synthesis of Rotihibin A as well as that of structural analogues, followed by transcriptional profiling-guided identification and validation of Rotihibin A as a TOR signaling inhibitor (TOR=target of rapamycin). These findings illustrate that a combined approach of transcriptional profiling and natural product research may represent a technically simple approach to streamline the development of chemical tools from natural products even for biologically complex multicellular biological systems.


Subject(s)
Oligopeptides/chemical synthesis , Protein Kinase Inhibitors/chemical synthesis , TOR Serine-Threonine Kinases/antagonists & inhibitors , Arabidopsis/drug effects , Arabidopsis/metabolism , Biological Products , Gene Expression , Gene Expression Profiling , Models, Molecular , Mutation , Oligopeptides/pharmacology , Protein Kinase Inhibitors/pharmacology , Sirolimus/pharmacology , Small Molecule Libraries
17.
J Proteome Res ; 17(8): 2679-2694, 2018 08 03.
Article in English | MEDLINE | ID: mdl-29863874

ABSTRACT

The HTRA1 gene encoding an evolutionary conserved protein quality-control factor can be epigenetically silenced or inactivated by mutation under pathologic conditions such as cancer. Recent evidence suggests that the loss of HTRA1 function causes multiple phenotypes, including the acceleration of cell growth, delayed onset of senescence, centrosome amplification, and polyploidy, suggesting an implication in the regulation of the cell cycle. To address this model, we performed a large-scale proteomics study to correlate the abundance of proteins and HTRA1 levels in various cell cycle phases using label-free-quantification mass spectrometry. These data indicate that the levels of 4723 proteins fluctuated in a cell-cycle-dependent manner, 2872 in a HTRA1-dependent manner, and 1530 in a cell-cycle- and HTRA1-dependent manner. The large number of proteins affected by the modulation of HTRA1 levels supports its general role in protein homeostasis. Moreover, the detected changes in protein abundance, in combination with pull-down data, implicate HTRA1 in various cell cycle events such as DNA replication, chromosome segregation, and cell-cycle-dependent apoptosis. These results highlight the wide implications of HTRA1 in cellular physiology.


Subject(s)
Cell Cycle , High-Temperature Requirement A Serine Peptidase 1/physiology , Proteomics/methods , Analysis of Variance , Apoptosis , Chromosome Segregation , DNA Replication , Gene Expression Regulation , High-Temperature Requirement A Serine Peptidase 1/genetics , Homeostasis , Humans , Mass Spectrometry , Proteins/analysis
18.
Oncogene ; 37(31): 4260-4272, 2018 08.
Article in English | MEDLINE | ID: mdl-29713059

ABSTRACT

The serine protease HTRA1 is involved in several vascular diseases and its expression is often deregulated in cancer. We aimed at identifying how HTRA1 in the vasculature affects tumor growth. Here we report that silencing of HTRA1 in cultured endothelial cells increased migration rate and tube formation, whereas forced HTRA1 expression impaired sprouting angiogenesis. Mechanistically, endothelial HTRA1 expression enhanced Delta/Notch signaling by reducing the amount of the weak Notch ligand JAG1. HTRA1 physically interacted with JAG1 and cleaved it within the intracellular domain, leading to protein degradation. Expression of a constitutive active Notch1 prevented the hypersprouting phenotype upon silencing of HTRA1. In HtrA1-deficient mice, endothelial Notch signaling was diminished and isolated endothelial cells had increased expression of VEGF receptor-2. Growth of syngeneic tumors was strongly impaired in HtrA1-/- mice. The tumor vasculature was much denser in HtrA1-/- mice and less covered with mural cells. This chaotic and immature vascular network was poorly functional as indicated by large hypoxic tumor areas and low tumor cell proliferation rates. In summary, inhibition of HTRA1 in the tumor stroma impaired tumor progression by deregulating angiogenesis.


Subject(s)
Cell Proliferation/physiology , High-Temperature Requirement A Serine Peptidase 1/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Animals , Cell Line, Tumor , Cell Movement/physiology , Cells, Cultured , Human Umbilical Vein Endothelial Cells , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Jagged-1 Protein/metabolism , Melanoma, Experimental , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Receptors, Notch/metabolism , Signal Transduction/physiology , Vascular Endothelial Growth Factor Receptor-2/metabolism
19.
ACS Chem Biol ; 13(5): 1307-1312, 2018 05 18.
Article in English | MEDLINE | ID: mdl-29658704

ABSTRACT

Covalent modifications of nonactive site lysine residues by small molecule probes has recently evolved into an important strategy for interrogating biological systems. Here, we report the discovery of a class of bioreactive compounds that covalently modify lysine residues in DegS, the rate limiting protease of the essential bacterial outer membrane stress response pathway. These modifications lead to an allosteric activation and allow the identification of novel residues involved in the allosteric activation circuit. These findings were validated by structural analyses via X-ray crystallography and cell-based reporter systems. We anticipate that our findings are not only relevant for a deeper understanding of the structural basis of allosteric activation in DegS and other HtrA serine proteases but also pinpoint an alternative use of covalent small molecules for probing essential biochemical mechanisms.


Subject(s)
Lysine/chemistry , Molecular Probes/chemistry , Allosteric Regulation , Bacterial Proteins/chemistry , Catalysis , Crystallography, X-Ray , Protein Conformation
20.
Angew Chem Int Ed Engl ; 56(29): 8555-8558, 2017 07 10.
Article in English | MEDLINE | ID: mdl-28514117

ABSTRACT

The S1 serine protease family is one of the largest and most biologically important protease families. Despite their biomedical significance, generic approaches to generate potent, class-specific, bioactive non-covalent inhibitors for these enzymes are still limited. In this work, we demonstrate that Ahp-cyclodepsipeptides represent a suitable scaffold for generating target-tailored inhibitors of serine proteases. For efficient synthetic access, we developed a practical mixed solid- and solution-phase synthesis that we validated through performing the first chemical synthesis of the two natural products Tasipeptin A and B. The suitability of the Ahp-cyclodepsipeptide scaffold for tailored inhibitor synthesis is showcased by the generation of the most potent human HTRA protease inhibitors to date. We anticipate that our approach may also be applied to other serine proteases, thus opening new avenues for a systematic discovery of serine protease inhibitors.


Subject(s)
Depsipeptides/pharmacology , Serine Proteases/metabolism , Serine Proteinase Inhibitors/pharmacology , Depsipeptides/chemical synthesis , Depsipeptides/chemistry , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Conformation , Serine Proteinase Inhibitors/chemical synthesis , Serine Proteinase Inhibitors/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...