Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
J Comput Aided Mol Des ; 38(1): 23, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38814371

ABSTRACT

In this work, we present the frontend of GeoMine and showcase its application, focusing on the new features of its latest version. GeoMine is a search engine for ligand-bound and predicted empty binding sites in the Protein Data Bank. In addition to its basic text-based search functionalities, GeoMine offers a geometric query type for searching binding sites with a specific relative spatial arrangement of chemical features such as heavy atoms and intermolecular interactions. In contrast to a text search that requires simple and easy-to-formulate user input, a 3D input is more complex, and its specification can be challenging for users. GeoMine's new version aims to address this issue from the graphical user interface perspective by introducing an additional visualization concept and a new query template type. In its latest version, GeoMine extends its query-building capabilities primarily through input formulation in 2D. The 2D editor is fully synchronized with GeoMine's 3D editor and provides the same functionality. It enables template-free query generation and template-based query selection directly in 2D pose diagrams. In addition, the query generation with the 3D editor now supports predicted empty binding sites for AlphaFold structures as query templates. GeoMine is freely accessible on the ProteinsPlus web server ( https://proteins.plus ).


Subject(s)
Databases, Protein , Protein Binding , Proteins , User-Computer Interface , Ligands , Binding Sites , Proteins/chemistry , Proteins/metabolism , Software , Search Engine , Protein Conformation , Models, Molecular
2.
J Chem Inf Model ; 64(8): 3332-3349, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38470439

ABSTRACT

Analyzing the similarity of protein interfaces in protein-protein interactions gives new insights into protein function and assists in discovering new drugs. Usually, tools that assess the similarity focus on the interactions between two protein interfaces, while sometimes we only have one predicted interface. Herein, we present PiMine, a database-driven protein interface similarity search. It compares interface residues of one or two interacting chains by calculating and searching tetrahedral geometric patterns of α-carbon atoms and calculating physicochemical and shape-based similarity. On a dedicated, tailor-made dataset, we show that PiMine outperforms commonly used comparison tools in terms of early enrichment when considering interfaces of sequentially and structurally unrelated proteins. In an application example, we demonstrate its usability for protein interaction partner prediction by comparing predicted interfaces to known protein-protein interfaces.


Subject(s)
Databases, Protein , Proteins , Proteins/chemistry , Proteins/metabolism , Protein Conformation , Protein Binding , Protein Interaction Mapping/methods , Models, Molecular
3.
J Comput Aided Mol Des ; 38(1): 13, 2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38493240

ABSTRACT

The growing size of make-on-demand chemical libraries is posing new challenges to cheminformatics. These ultra-large chemical libraries became too large for exhaustive enumeration. Using a combinatorial approach instead, the resource requirement scales approximately with the number of synthons instead of the number of molecules. This gives access to billions or trillions of compounds as so-called chemical spaces with moderate hardware and in a reasonable time frame. While extremely performant ligand-based 2D methods exist in this context, 3D methods still largely rely on exhaustive enumeration and therefore fail to apply. Here, we present SpaceGrow: a novel shape-based 3D approach for ligand-based virtual screening of billions of compounds within hours on a single CPU. Compared to a conventional superposition tool, SpaceGrow shows comparable pose reproduction capacity based on RMSD and superior ranking performance while being orders of magnitude faster. Result assessment of two differently sized subsets of the eXplore space reveals a higher probability of finding superior results in larger spaces highlighting the potential of searching in ultra-large spaces. Furthermore, the application of SpaceGrow in a drug discovery workflow was investigated in four examples involving G protein-coupled receptors (GPCRs) with the aim to identify compounds with similar binding capabilities and molecular novelty.


Subject(s)
Drug Discovery , Small Molecule Libraries , Ligands , Small Molecule Libraries/chemistry , Drug Discovery/methods
4.
Arch Pharm (Weinheim) ; 357(5): e2300661, 2024 May.
Article in English | MEDLINE | ID: mdl-38335311

ABSTRACT

Drug discovery and design challenges, such as drug repurposing, analyzing protein-ligand and protein-protein complexes, ligand promiscuity studies, or function prediction, can be addressed by protein binding site similarity analysis. Although numerous tools exist, they all have individual strengths and drawbacks with regard to run time, provision of structure superpositions, and applicability to diverse application domains. Here, we introduce SiteMine, an all-in-one database-driven, alignment-providing binding site similarity search tool to tackle the most pressing challenges of binding site comparison. The performance of SiteMine is evaluated on the ProSPECCTs benchmark, showing a promising performance on most of the data sets. The method performs convincingly regarding all quality criteria for reliable binding site comparison, offering a novel state-of-the-art approach for structure-based molecular design based on binding site comparisons. In a SiteMine showcase, we discuss the high structural similarity between cathepsin L and calpain 1 binding sites and give an outlook on the impact of this finding on structure-based drug design. SiteMine is available at https://uhh.de/naomi.


Subject(s)
Databases, Protein , Binding Sites , Ligands , Drug Design , Drug Discovery , Proteins/chemistry , Proteins/metabolism , Protein Binding , Protein Conformation , Humans , Cathepsin L/metabolism , Cathepsin L/chemistry , Cathepsin L/antagonists & inhibitors
6.
J Chem Inf Model ; 64(1): 219-237, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38108627

ABSTRACT

Molecular docking is a standard technique in structure-based drug design (SBDD). It aims to predict the 3D structure of a small molecule in the binding site of a receptor (often a protein). Despite being a common technique, it often necessitates multiple tools and involves manual steps. Here, we present the JAMDA preprocessing and docking workflow that is easy to use and allows fully automated docking. We evaluate the JAMDA docking workflow on binding sites extracted from the complete PDB and derive key factors determining JAMDA's docking performance. With that, we try to remove most of the bias due to manual intervention and provide a realistic estimate of the redocking performance of our JAMDA preprocessing and docking workflow for any PDB structure. On this large PDBScan22 data set, our JAMDA workflow finds a pose with an RMSD of at most 2 Å to the crystal ligand on the top rank for 30.1% of the structures. When applying objective structure quality filters to the PDBScan22 data set, the success rate increases to 61.8%. Given the prepared structures from the JAMDA preprocessing pipeline, both JAMDA and the widely used AutoDock Vina perform comparably on this filtered data set (the PDBScan22-HQ data set).


Subject(s)
Drug Design , Molecular Docking Simulation , Binding Sites , Ligands , Protein Binding
7.
Acta Crystallogr D Struct Biol ; 79(Pt 9): 837-856, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37561404

ABSTRACT

Due to the structural complexity of proteins, their corresponding crystal arrangements generally contain a significant amount of solvent-occupied space. These areas allow a certain degree of intracrystalline protein flexibility and mobility of solutes. Therefore, knowledge of the geometry of solvent-filled channels and cavities is essential whenever the dynamics inside a crystal are of interest. Especially in soaking experiments for structure-based drug design, ligands must be able to traverse the crystal solvent channels and reach the corresponding binding pockets. Unsuccessful screenings are sometimes attributed to the geometry of the crystal packing, but the underlying causes are often difficult to understand. This work presents LifeSoaks, a novel tool for analyzing and visualizing solvent channels in protein crystals. LifeSoaks uses a Voronoi diagram-based periodic channel representation which can be efficiently computed. The size and location of channel bottlenecks, which might hinder molecular diffusion, can be directly derived from this representation. This work presents the calculated bottleneck radii for all crystal structures in the PDB and the analysis of a new, hand-curated data set of structures obtained by soaking experiments. The results indicate that the consideration of bottleneck radii and the visual inspection of channels are beneficial for planning soaking experiments.


Subject(s)
Proteins , Solvents , Proteins/chemistry
8.
J Chem Inf Model ; 63(10): 3128-3137, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37130052

ABSTRACT

Binding site prediction on protein structures is a crucial step in early phase drug discovery whenever experimental or predicted structure models are involved. DoGSite belongs to the widely used tools for this task. It is a grid-based method that uses a Difference-of-Gaussian filter to detect cavities on the protein surface. We recently reimplemented the first version of this method, released in 2010, focusing on improved binding site detection in the presence of ligands and optimized parameters for more robust, reliable, and fast predictions and binding site descriptor calculations. Here, we introduce the new version, DoGSite3, compare it to its predecessor, and re-evaluate DoGSite on published data sets for a large-scale comparative performance evaluation.


Subject(s)
Drug Discovery , Proteins , Binding Sites , Proteins/chemistry , Protein Domains , Ligands , Protein Binding
9.
J Med Chem ; 66(9): 6297-6314, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37130057

ABSTRACT

Fragment-based drug discovery has played an important role in medicinal chemistry and pharmaceutical research. Despite numerous demonstrated successes, the limited diversity and overrepresentation of planar, sp2-rich structures in commercial libraries often hamper the full potential of this approach. Hence, the thorough design of screening libraries inevitably determines the probability for meaningful hits and subsequent structural elaboration. Against this background, we present the generation of an exclusive fragment library based on iterative entry nomination by a specifically designed computational workflow: "Fragtory". Following a pharmacophore diversity-driven approach, we used Fragtory in an interdisciplinary academic setting to guide both tailored synthesis efforts and the implementation of in-house compounds to build a curated 288-member library of sp3-enriched fragments. Subsequent NMR screens against a model protein and hit validation by protein crystallography led to the identification of structurally novel ligands that were further characterized by isothermal titration calorimetry, demonstrating the applicability of our experimental approach.


Subject(s)
Drug Discovery , Pharmacophore , Proteins , Protein Binding , Ligands , Drug Design
10.
Curr Opin Struct Biol ; 80: 102578, 2023 06.
Article in English | MEDLINE | ID: mdl-37019067

ABSTRACT

The size of actionable chemical spaces is surging, owing to a variety of novel techniques, both computational and experimental. As a consequence, novel molecular matter is now at our fingertips that cannot and should not be neglected in early-phase drug discovery. Huge, combinatorial, make-on-demand chemical spaces with high probability of synthetic success rise exponentially in content, generative machine learning models go hand in hand with synthesis prediction, and DNA-encoded libraries offer new ways of hit structure discovery. These technologies enable to search for new chemical matter in a much broader and deeper manner with less effort and fewer financial resources. These transformational developments require new cheminformatics approaches to make huge chemical spaces searchable and analyzable with low resources, and with as little energy consumption as possible. Substantial progress has been made in the past years with respect to computation as well as organic synthesis. First examples of bioactive compounds resulting from the successful use of these novel technologies demonstrate their power to contribute to tomorrow's drug discovery programs. This article gives a compact overview of the state-of-the-art.


Subject(s)
Drug Discovery , Small Molecule Libraries , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Drug Discovery/methods , Gene Library
11.
RSC Med Chem ; 13(12): 1540-1548, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36545435

ABSTRACT

Ten-eleven translocation dioxygenases (TETs) are the erasers of 5-methylcytosine (mC), the central epigenetic regulator of mammalian DNA. TETs convert mC to three oxidized derivatives with unique physicochemical properties and inherent regulatory potential, and it initializes active demethylation by the base excision repair pathway. Potent small molecule inhibitors would be useful tools to study TET functions by conditional control. To facilitate the discovery of such tools, we here report a high-throughput screening pipeline and its application to screen and validate 31.5k compounds for inhibition of TET2. Using a homogenous fluorescence assay, we discover a novel quinoline-based scaffold that we further validate with an orthogonal semi-high throughput MALDI-MS assay for direct monitoring of substrate turnover. Structure-activity relationship (SAR) studies involving >20 derivatives of this scaffold led to the identification of optimized inhibitors, and together with computational studies suggested a plausible model for its mode of action.

12.
Chem Sci ; 13(37): 11221-11231, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36320474

ABSTRACT

Databases contain millions of reactions for compound synthesis, rendering selection of reactions for forward synthetic design of small molecule screening libraries, such as DNA-encoded libraries (DELs), a big data challenge. To support reaction space navigation, we developed the computational workflow Reaction Navigator. Reaction files from a large chemistry database were processed using the open-source KNIME Analytics Platform. Initial processing steps included a customizable filtering cascade that removed reactions with a high probability to be incompatible with DEL, as they would e.g. damage the genetic barcode, to arrive at a comprehensive list of transformations for DEL design with applicability potential. These reactions were displayed and clustered by user-defined molecular reaction descriptors which are independent of reaction core substitution patterns. Thanks to clustering, these can be searched manually to identify reactions for DEL synthesis according to desired reaction criteria, such as ring formation or sp3 content. The workflow was initially applied for mapping chemical reaction space for aromatic aldehydes as an exemplary functional group often used in DEL synthesis. Exemplary reactions have been successfully translated to DNA-tagged substrates and can be applied to library synthesis. The versatility of the Reaction Navigator was then shown by mapping reaction space for different reaction conditions, for amines as a second set of starting materials, and for data from a second database.

13.
Nucleic Acids Res ; 50(W1): W611-W615, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35489057

ABSTRACT

Upon the ever-increasing number of publicly available experimentally determined and predicted protein and nucleic acid structures, the demand for easy-to-use tools to investigate these structural models is higher than ever before. The ProteinsPlus web server (https://proteins.plus) comprises a growing collection of molecular modeling tools focusing on protein-ligand interactions. It enables quick access to structural investigations ranging from structure analytics and search methods to molecular docking. It is by now well-established in the community and constantly extended. The server gives easy access not only to experts but also to students and occasional users from the field of life sciences. Here, we describe its recently added new features and tools, beyond them a novel method for on-the-fly molecular docking and a search method for single-residue substitutions in local regions of a protein structure throughout the whole Protein Data Bank. Finally, we provide a glimpse into new avenues for the annotation of AlphaFold structures which are directly accessible via a RESTful service on the ProteinsPlus web server.


Subject(s)
Proteins , Software , Molecular Docking Simulation , Proteins/chemistry , Models, Molecular , Internet
14.
J Med Chem ; 65(2): 1384-1395, 2022 01 27.
Article in English | MEDLINE | ID: mdl-34491747

ABSTRACT

The ever-growing number of protein-ligand complex structures can give fundamental insights into protein functions and protein-ligand interactions, especially in the field of protein kinase research. The number of tools to mine this data for individually defined structural motifs is restricted due to the challenging task of developing efficient index structures for 3D data in relational databases. Herein we present GeoMine, a database system with web front-end mining of more than 900 000 binding sites. It enables database searches for geometric (interaction) patterns in protein-ligand interfaces by, for example, textual, numerical, substructure, similarity, and 3D searches. GeoMine processes reasonably selective user-defined queries within minutes. We demonstrate its usability for advancing protein kinase research with a special emphasis on unusual interactions, their use in designing selective kinase inhibitors, and the analysis of reactive cysteine residues that are amenable to covalent kinase inhibitors. GeoMine is freely available as part of our modeling support server at https://proteins.plus.


Subject(s)
Databases, Protein , Drug Design , Protein Kinases/chemistry , Protein Kinases/metabolism , Software , Binding Sites , Humans , Ligands , Protein Binding
15.
Science ; 372(6542): 642-646, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33811162

ABSTRACT

The coronavirus disease (COVID-19) caused by SARS-CoV-2 is creating tremendous human suffering. To date, no effective drug is available to directly treat the disease. In a search for a drug against COVID-19, we have performed a high-throughput x-ray crystallographic screen of two repurposing drug libraries against the SARS-CoV-2 main protease (Mpro), which is essential for viral replication. In contrast to commonly applied x-ray fragment screening experiments with molecules of low complexity, our screen tested already-approved drugs and drugs in clinical trials. From the three-dimensional protein structures, we identified 37 compounds that bind to Mpro In subsequent cell-based viral reduction assays, one peptidomimetic and six nonpeptidic compounds showed antiviral activity at nontoxic concentrations. We identified two allosteric binding sites representing attractive targets for drug development against SARS-CoV-2.


Subject(s)
Allosteric Site , Antiviral Agents/chemistry , Catalytic Domain , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Drug Development , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , Animals , Antiviral Agents/pharmacology , Chlorocebus aethiops , Crystallography, X-Ray , Drug Evaluation, Preclinical , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Vero Cells , Virus Replication/drug effects
16.
Cancer Discov ; 11(1): 108-125, 2021 01.
Article in English | MEDLINE | ID: mdl-32972961

ABSTRACT

Gastrointestinal stromal tumors (GIST) harboring activating mutations of PDGFRA respond to imatinib, with the notable exception of the most common mutation, D842V. Avapritinib is a novel, potent KIT/PDGFRA inhibitor with substantial clinical activity in patients with the D842V genotype. To date, only a minority of PDGFRA-mutant patients treated with avapritinib have developed secondary resistance. Tumor and plasma biopsies in 6 of 7 patients with PDGFRA primary mutations who progressed on avapritinib or imatinib had secondary resistance mutations within PDGFRA exons 13, 14, and 15 that interfere with avapritinib binding. Secondary PDGFRA mutations causing V658A, N659K, Y676C, and G680R substitutions were found in 2 or more patients each, representing recurrent mechanisms of PDGFRA GIST drug resistance. Notably, most PDGFRA-mutant GISTs refractory to avapritinib remain dependent on the PDGFRA oncogenic signal. Inhibitors that target PDGFRA protein stability or inhibition of PDGFRA-dependent signaling pathways may overcome avapritinib resistance. SIGNIFICANCE: Here, we provide the first description of avapritinib resistance mechanisms in PDGFRA-mutant GIST.This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
Gastrointestinal Stromal Tumors , Gastrointestinal Stromal Tumors/drug therapy , Gastrointestinal Stromal Tumors/genetics , Humans , Mutation , Pyrazoles , Pyrroles , Receptor, Platelet-Derived Growth Factor alpha/genetics , Triazines
17.
Mol Inform ; 39(12): e2000216, 2020 12.
Article in English | MEDLINE | ID: mdl-32997890

ABSTRACT

The number of publications concerning Pan-Assay Interference Compounds and related problematic structural motifs in screening libraries is constantly growing. In consequence, filter collections are merged, extended but also critically discussed. Due to the complexity of the chemical pattern language SMARTS, an easy-to-use toolbox enabling every chemist to understand, design and modify chemical patterns is urgently needed. Over the past decade, we developed a series of software tools for visualizing, editing, creating, and analysing chemical patterns. Herein, we highlight how most of these tools can now be easily used as part of the novel SMARTS.plus web server (https://smarts.plus/). As a showcase, we demonstrate how researchers can apply the web server tools within minutes to derive novel SMARTS patterns for the filtering of frequent hitters from their screening libraries with only a little experience with the SMARTS language.


Subject(s)
Cheminformatics , Pattern Recognition, Automated , Software , Workflow
18.
Sci Rep ; 10(1): 8074, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32415277

ABSTRACT

Interactions between proteins and ligands, which are fundamental to many biochemical processes essential to life, are mostly studied at dilute buffer conditions. The effects of the highly crowded nature of biological cells and the effects of liquid-liquid phase separation inducing biomolecular droplet formation as a means of membrane-less compartmentalization have been largely neglected in protein binding studies. We investigated the binding of a small ligand (ANS) to one of the most multifunctional proteins, bovine serum albumin (BSA) in an aqueous two-phase system (ATPS) composed of PEG and Dextran. Also, aiming to shed more light on differences in binding mode compared to the neat buffer data, we examined the effect of high hydrostatic pressure (HHP) on the binding process. We observe a marked effect of the ATPS on the binding characteristics of BSA. Not only the binding constants change in the ATPS system, but also the integrity of binding sites is partially lost, which is most likely due to soft enthalpic interactions of the BSA with components in the dense droplet phase of the ATPS. Using pressure modulation, differences in binding sites could be unravelled by their different volumetric and hydration properties. Regarding the vital biological relevance of the study, we notice that extreme biological environments, such as HHP, can markedly affect the binding characteristics of proteins. Hence, organisms experiencing high-pressure stress in the deep sea need to finely adjust the volume changes of their biochemical reactions in cellulo.


Subject(s)
Anilino Naphthalenesulfonates/chemistry , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Stress, Mechanical , Water/chemistry , Animals , Cattle , Hydrophobic and Hydrophilic Interactions , Pressure , Protein Binding , Protein Conformation
19.
Bioinformatics ; 36(8): 2417-2428, 2020 04 15.
Article in English | MEDLINE | ID: mdl-31742326

ABSTRACT

MOTIVATION: Secondary structure classification is one of the most important issues in structure-based analyses due to its impact on secondary structure prediction, structural alignment and protein visualization. There are still open challenges concerning helix and sheet assignments which are currently not addressed by a single multi-purpose software. RESULTS: We introduce SCOT (Secondary structure Classification On Turns) as a novel secondary structure element assignment software which supports the assignment of turns, right-handed α-, 310- and π-helices, left-handed α- and 310-helices, 2.27- and polyproline II helices, ß-sheets and kinks. We demonstrate that the introduction of helix Purity values enables a clear differentiation between helix classes. SCOT's unique strengths are highlighted by comparing it to six state-of-the-art methods (DSSP, STRIDE, ASSP, SEGNO, DISICL and SHAFT). The assignment approaches were compared concerning geometric consistency, protein structure quality and flexibility dependency and their impact on secondary structure element-based structural alignments. We show that only SCOT's combination of hydrogen bonds, geometric criteria and dihedral angles enables robust assignments independent of the structure quality and flexibility. We demonstrate that this combination and the elaborate kink detection lead to SCOT's clear superiority for protein alignments. As the resulting helices and strands are provided in a PDB conform output format, they can immediately be used for structure alignment algorithms. Taken together, the application of our new method and the straight-forward visualization using the accompanying PyMOL scripts enable the comprehensive analysis of regular backbone geometries in proteins. AVAILABILITY AND IMPLEMENTATION: https://this-group.rocks. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Proteins , Software , Algorithms , Hydrogen Bonding , Protein Structure, Secondary
20.
Medchemcomm ; 10(7): 1145-1159, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31391887

ABSTRACT

The elucidation of non-obvious binding site similarities has provided useful indications for the establishment of polypharmacology, the identification of potential off-targets, or the repurposing of known drugs. The concept underlying all of these approaches is promiscuous binding which can be analyzed from a ligand-based or a binding site-based perspective. Herein, we applied methods for the automated analysis and comparison of protein binding sites to study promiscuous binding on a novel dataset of sites in complex with ligands sharing common shape and physicochemical properties. We show the suitability of this dataset for the benchmarking of novel binding site comparison methods. Our investigations also reveal promising directions for further in-depth analyses of promiscuity and druggability in a pocket-centered manner. Drawbacks concerning binding site similarity assessment and druggability prediction are outlined, enabling researchers to avoid the typical pitfalls of binding site analyses.

SELECTION OF CITATIONS
SEARCH DETAIL
...