Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 9(1): 285, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35680940

ABSTRACT

Rising temperatures are causing distress across the world, and for those most vulnerable, it is a silent killer. Information about indoor air temperature in residential dwellings is of interest for a range of reasons, such as health, thermal comfort and coping practices. However, there have been only few studies that measure indoor heat exposure, and contrast these to outdoor temperatures in rural-urban areas, of which none are in South Asia. We aim to close this knowledge gap with our indoor and outdoor heat measurement dataset, covering five low-income sites in South Asia. Two sites are in rural areas (Maharashtra, India), while three sites focus on urban areas (Dhaka, Delhi and Faisalabad). Data are based on 206 indoor temperature data loggers and complemented by data from five outdoor automated weather stations. The data-set can be used to examine temperature and humidity variation in low-socioeconomic status households in rural and urban areas and to better understand factors aggravating heat stress. This is important to plan and implement actions for combating heat stress.

2.
Article in English | MEDLINE | ID: mdl-33806383

ABSTRACT

Heat stress provokes thermal discomfort to people living in semiarid and arid climates. This study evaluates thermal discomfort levels, building design concepts, and some heat mitigation strategies in low-income neighborhoods of Faisalabad, Pakistan. The outdoor and indoor weather data are collected from April to August 2016 using a weather station installed ad hoc in urban settings, and the 52 houses of the five low-income participating communities living in congested and less environment-friendly areas of Faisalabad. The discomfort index values, related to the building design concepts, including (i) house orientation to sunlight and (ii) house ventilation, are calculated from outdoor and indoor dry-bulb and wet-bulb temperatures. Our results show that although June was the hottest month of summer 2016, based on the monthly mean temperature of the Faisalabad region, the month of May produced the highest discomfort levels, which were higher in houses exposed to sunlight and without ventilation. The study also identifies some popular heat mitigation strategies adopted by the five participating low-income communities during various heat-related health complaints. The strategies are gender-biased and have medical, cultural/customary backgrounds. For example, about 52% of the males and 28% of the females drank more water during dehydration, diarrhea, and eye infection. Over 11% and 19% of the males and females, respectively, moved to cooler places during fever. About 43% of the males and 51% of the females took water showers and rested to combat flu (runny nose), headache, and nosebleed. The people did not know how to cure muscular fatigue, skin allergy (from a type of Milia), and mild temperature. Planting trees in an area and developing open parks with greenery and thick canopy trees can be beneficial for neighborhoods resembling those evaluated in this study.


Subject(s)
Heat Stress Disorders , Cities , Female , Hot Temperature , Humans , Male , Pakistan , Temperature
3.
Environ Sci Pollut Res Int ; 24(12): 11177-11191, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28281063

ABSTRACT

Agroforestry is a sustainable land use system with a promising potential to sequester atmospheric carbon into soil. This system of land use distinguishes itself from the other systems, such as sole crop cultivation and afforestation on croplands only through its potential to sequester higher amounts of carbon (in the above- and belowground tree biomass) than the aforementioned two systems. According to Kyoto protocol, agroforestry is recognized as an afforestation activity that, in addition to sequestering carbon dioxide (CO2) to soil, conserves biodiversity, protects cropland, works as a windbreak, and provides food and feed to human and livestock, pollen for honey bees, wood for fuel, and timber for shelters construction. Agroforestry is more attractive as a land use practice for the farming community worldwide instead of cropland and forestland management systems. This practice is a win-win situation for the farming community and for the environmental sustainability. This review presents agroforestry potential to counter the increasing concentration of atmospheric CO2 by sequestering it in above- and belowground biomass. The role of agroforestry in climate change mitigation worldwide might be recognized to its full potential by overcoming various financial, technical, and institutional barriers. Carbon sequestration in soil by various agricultural systems can be simulated by various models but literature lacks reports on validated models to quantify the agroforestry potential for carbon sequestration.


Subject(s)
Carbon Sequestration , Climate Change , Conservation of Natural Resources , Forestry , Agriculture , Carbon , Soil , Trees
4.
Ecotoxicol Environ Saf ; 106: 164-72, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24840879

ABSTRACT

Phytoextraction is an eco-friendly and cost-effective technique for removal of toxins, especially heavy metals and metalloids from contaminated soils by the roots of high biomass producing plant species with subsequent transport to aerial parts. Lower metal bioavailability often limits the phytoextraction. Organic chelators can help to improve this biological technique by increasing metal solubility. The aim of the present study was to investigate the possibility of improving the phytoextraction of Cd by the application of citric acid. For this purpose, plants were grown in hydroponics under controlled conditions. Results indicated that Cd supply significantly decreased the plant growth, biomass, pigments, photosynthetic characteristics and protein contents which were accompanied by a significant increase in Cd concentration, hydrogen peroxide (H2O2), electrolyte leakage, malondialdehyde (MDA) accumulation and decrease in antioxidant capacity. The effects were dose dependent with obvious effects at higher Cd concentration. Application of CA significantly enhanced Cd uptake and its accumulation in plant roots, stems and leaves. Citric acid alleviated Cd toxicity by increasing plant biomass and photosynthetic and growth parameters alone and in combination with Cd and by reducing oxidative stress as observed by reduction in MDA and H2O2 production and decreased electrolyte leakage induced by Cd stress. Application of CA also enhanced the antioxidant enzymes activity alone and under Cd stress. Thus, the data indicate that exogenous CA application can increase Cd uptake and minimize Cd stress in plants and may be beneficial in accelerating the phytoextraction of Cd through hyper-accumulating plants such as Brassica napus L.


Subject(s)
Brassica napus/drug effects , Brassica napus/metabolism , Cadmium/metabolism , Cadmium/toxicity , Citric Acid/pharmacology , Biodegradation, Environmental/drug effects , Cadmium/analysis , Chelating Agents/metabolism , Chelating Agents/pharmacology , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Malondialdehyde/metabolism , Malondialdehyde/pharmacology , Oxidative Stress/drug effects , Plant Roots/chemistry , Plant Roots/drug effects , Plant Roots/metabolism , Soil Pollutants/analysis , Soil Pollutants/metabolism , Soil Pollutants/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...