Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Compr Rev Food Sci Food Saf ; 19(4): 1777-1808, 2020 07.
Article in English | MEDLINE | ID: mdl-33337096

ABSTRACT

Mycotoxins such as aflatoxins (AFs), ochratoxin A (OTA) fumonisins (FMN), deoxynivalenol (DON), zearalenone (ZEN), and patulin are stable at regular food process practices. Ozone (O3 ) is a strong oxidizer and generally considered as a safe antimicrobial agent in food industries. Ozone disrupts fungal cells through oxidizing sulfhydryl and amino acid groups of enzymes or attacks the polyunsaturated fatty acids of the cell wall. Fusarium is the most sensitive mycotoxigenic fungi to ozonation followed by Aspergillus and Penicillium. Studies have shown complete inactivation of Fusarium and Aspergillus by O3 gas. Spore germination and toxin production have also been reduced after ozone fumigation. Both naturally and artificially, mycotoxin-contaminated samples have shown significant mycotoxin reduction after ozonation. Although the mechanism of detoxification is not very clear for some mycotoxins, it is believed that ozone reacts with the functional groups in the mycotoxin molecules, changes their molecular structures, and forms products with lower molecular weight, less double bonds, and less toxicity. Although some minor physicochemical changes were observed in some ozone-treated foods, these changes may or may not affect the use of the ozonated product depending on the further application of it. The effectiveness of the ozonation process depends on the exposure time, ozone concentration, temperature, moisture content of the product, and relative humidity. Due to its strong oxidizing property and corrosiveness, there are strict limits for O3 gas exposure. O3 gas has limited penetration and decomposes quickly. However, ozone treatment can be used as a safe and green technology for food preservation and control of contaminants.


Subject(s)
Fungi/drug effects , Mycotoxins/chemistry , Ozone/pharmacology , Anti-Infective Agents/pharmacology , Food Contamination/prevention & control , Food Microbiology , Fumigation/methods , Ozone/chemistry
2.
Compr Rev Food Sci Food Saf ; 18(5): 1563-1621, 2019 Sep.
Article in English | MEDLINE | ID: mdl-33336912

ABSTRACT

Food product safety is a public health concern. Most of the food safety analytical and detection methods are expensive, labor intensive, and time consuming. A safe, rapid, reliable, and nondestructive detection method is needed to assure consumers that food products are safe to consume. Terahertz (THz) radiation, which has properties of both microwave and infrared, can penetrate and interact with many commonly used materials. Owing to the technological developments in sources and detectors, THz spectroscopic imaging has transitioned from a laboratory-scale technique into a versatile imaging tool with many practical applications. In recent years, THz imaging has been shown to have great potential as an emerging nondestructive tool for food inspection. THz spectroscopy provides qualitative and quantitative information about food samples. The main applications of THz in food industries include detection of moisture, foreign bodies, inspection, and quality control. Other applications of THz technology in the food industry include detection of harmful compounds, antibiotics, and microorganisms. THz spectroscopy is a great tool for characterization of carbohydrates, amino acids, fatty acids, and vitamins. Despite its potential applications, THz technology has some limitations, such as limited penetration, scattering effect, limited sensitivity, and low limit of detection. THz technology is still expensive, and there is no available THz database library for food compounds. The scanning speed needs to be improved in the future generations of THz systems. Although many technological aspects need to be improved, THz technology has already been established in the food industry as a powerful tool with great detection and quantification ability. This paper reviews various applications of THz spectroscopy and imaging in the food industry.

SELECTION OF CITATIONS
SEARCH DETAIL
...