Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Acute Crit Care ; 39(1): 162-168, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38476069

ABSTRACT

BACKGROUND: Using peripheral arteries to infer central hemodynamics is common among hemodynamic monitors. Doppler ultrasound of the common carotid artery has been used in this manner with conflicting results. We investigated the relationship between changing common carotid artery Doppler measures and stroke volume (SV), hypothesizing that more consecutively-averaged cardiac cycles would improve SV-carotid Doppler correlation. METHODS: Twenty-seven healthy volunteers were recruited and studied in a physiology laboratory. Carotid artery Doppler pulse was measured with a wearable, wireless ultrasound during central hypovolemia and resuscitation induced by a stepped lower body negative pressure protocol. The change in maximum velocity time integral (VTI) and corrected flow time of the carotid artery (ccFT) were compared with changing SV using repeated measures correlation. RESULTS: In total, 73,431 cardiac cycles were compared across 27 subjects. There was a strong linear correlation between changing SV and carotid Doppler measures during simulated hemorrhage (repeated-measures linear correlation [Rrm ]=0.91 for VTI; 0.88 for ccFT). This relationship improved with larger numbers of consecutively-averaged cardiac cycles. For ccFT, beyond four consecutively-averaged cardiac cycles the correlation coefficient remained strong (i.e., Rrm of at least 0.80). For VTI, the correlation coefficient with SV was strong for any number of averaged cardiac cycles. For both ccFT and VTI, Rrm remained stable around 25 consecutively-averaged cardiac cycles. CONCLUSIONS: There was a strong linear correlation between changing SV and carotid Doppler measures during central blood volume loss. The strength of this relationship was dependent upon the number of consecutively-averaged cardiac cycles.

3.
Ultrasound J ; 15(1): 32, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37505318

ABSTRACT

Providing intravenous (IV) fluids to a patient with signs or symptoms of hypoperfusion is common. However, evaluating the IV fluid 'dose-response' curve of the heart is elusive. Two patients were studied in the emergency department with a wireless, wearable Doppler ultrasound system. Change in the common carotid arterial and internal jugular Doppler spectrograms were simultaneously obtained as surrogates of left ventricular stroke volume (SV) and central venous pressure (CVP), respectively. Both patients initially had low CVP jugular venous Doppler spectrograms. With preload augmentation, only one patient had arterial Doppler measures indicative of significant SV augmentation (i.e., 'fluid responsive'). The other patient manifested diminishing arterial response, suggesting depressed SV (i.e., 'fluid unresponsive') with evidence of ventricular asynchrony. In this short communication, we describe how a wireless, wearable Doppler ultrasound simultaneously tracks surrogates of cardiac preload and output within a 'Doppler Starling curve' framework; implications for IV fluid dosing are discussed.

4.
Front Biosci (Elite Ed) ; 15(2): 12, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37369572

ABSTRACT

BACKGROUND: The change in the corrected flow time of the common carotid artery (ccFTΔ) has been used as a surrogate of changing stroke volume (SVΔ) in the critically-ill. Thus, this relatively easy-to-obtain Doppler measure may help clinicians better define the intended effect of intravenous fluids. Yet the temporal evolution of SVΔ and ccFTΔ has not been reported in volunteers undergoing a passive leg raise (PLR). METHODS: We recruited clinically-euvolemic, non-fasted, adult, volunteers in a local physiology lab to perform 2 PLR maneuvers, each separated by a 5 minute 'wash-out'. During each PLR, SV was measured by a non-invasive pulse contour analysis device. SV was temporally-synchronized with a wireless, wearable Doppler ultrasound worn over the common carotid artery that continuously measured ccFT. RESULTS: 36 PLR maneuvers were obtained across 19 ambulatory volunteers. 8856 carotid Doppler cardiac cycles were analyzed. The ccFT increased nearly ubiquitously during the PLR and within 40-60 seconds of PLR onset; the rise in SV from the pulse contour device was more gradual. SVΔ by +5% and +10% were both detected by a +7% ccFTΔ with sensitivities, specificities and areas under the receiver operator curve of 59%, 95% and 0.77 (p < 0.001) and 66%, 76% and 0.73 (p < 0.001), respectively. CONCLUSIONS: The ccFTΔ during the PLR in ambulatory volunteers was rapid and sustained. Within the limits of precision for detecting a clinically-significant rise in SV by a non-invasive pulse contour analysis device, simultaneously-acquired ccFT from a wireless, wearable ultrasound system was accurate at detecting 'preload responsiveness'.


Subject(s)
Leg , Wearable Electronic Devices , Adult , Humans , Stroke Volume/physiology , Leg/diagnostic imaging , Leg/blood supply , Leg/physiology , Prospective Studies , Carotid Arteries/diagnostic imaging , Carotid Artery, Common , Ultrasonography, Doppler , Volunteers , Hemodynamics
5.
Diagnostics (Basel) ; 13(9)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37174981

ABSTRACT

A wireless, wearable Doppler ultrasound offers a new paradigm for linking physiology to resuscitation medicine. To this end, the image analysis of simultaneously-acquired venous and arterial Doppler spectrograms attained by wearable ultrasound represents a new source of hemodynamic data. Previous investigators have reported a direct relationship between the central venous pressure (CVP) and the ratio of the internal jugular-to-common carotid artery diameters. Because Doppler power is directly related to the number of red cell scatterers within a vessel, we hypothesized that (1) the ratio of internal jugular-to-carotid artery Doppler power (V/APOWER) would be a surrogate for the ratio of the vascular areas of these two vessels and (2) the V/APOWER would track the anticipated CVP change during simulated hemorrhage and resuscitation. To illustrate this proof-of-principle, we compared the change in V/APOWER obtained via a wireless, wearable Doppler ultrasound to B-mode ultrasound images during a head-down tilt. Additionally, we elucidated the change in the V/APOWER during simulated hemorrhage and transfusion via lower body negative pressure (LBNP) and release. With these Interesting Images, we show that the Doppler V/APOWER ratio qualitatively tracks anticipated changes in CVP (e.g., cardiac preload) which is promising for both diagnosis and management of hemodynamic unrest.

6.
Crit Care Explor ; 5(5): e0914, 2023 May.
Article in English | MEDLINE | ID: mdl-37168690

ABSTRACT

Measuring fluid responsiveness is important in the management of critically ill patients, with a 10-15% change in cardiac output typically being used to indicate "fluid responsiveness." Ideally, these changes would be measured noninvasively and peripherally. The aim of this study was to determine how the common carotid artery (CCA) maximum velocity changes with total circulatory flow when confounding factors are mitigated and determine a value for CCA maximum velocity corresponding to a 10% change in total circulatory flow. DESIGN: Prospective observational pilot study. SETTING: Patients undergoing elective, on-pump coronary artery bypass grafting (CABG) surgery. PATIENTS: Fourteen patients were referred for elective coronary artery bypass grafting surgery. INTERVENTIONS: Cardiopulmonary bypass (CPB) pump flow changes during surgery, as chosen by the perfusionist. MEASUREMENTS: A hands-free, wearable Doppler patch was used for CCA velocity measurements with the aim of preventing user errors in ultrasound measurements. Maximum CCA velocity was determined from the spectrogram acquired by the Doppler patch. CPB flow rates were recorded as displayed on the CPB console, and further measured from the peristaltic pulsation frequency visible on the recorded Doppler spectrograms. MAIN RESULTS: Changes in CCA maximum velocity tracked well with changes in CPB flow. On average, a 13.6% change in CCA maximum velocity was found to correspond to a 10% change in CPB flow rate. CONCLUSIONS: Changes in CCA velocity may be a useful surrogate for determining fluid responsiveness when user error can be mitigated.

7.
J Med Ultrasound ; 31(4): 309-313, 2023.
Article in English | MEDLINE | ID: mdl-38264586

ABSTRACT

Background: Doppler ultrasound of the common carotid artery is used to infer central hemodynamics. For example, change in the common carotid artery corrected flow time (ccFT) and velocity time integral (VTI) are proposed surrogates of changing stroke volume. However, conflicting data exist which may be due to inadequate beat sample size and measurement variability - both intrinsic to handheld systems. In this brief communication, we determined the correlation between changing ccFT and carotid VTI during progressively severe central blood volume loss and resuscitation. Methods: Measurements were obtained through a novel, wireless, wearable Doppler ultrasound system. Sixteen participants (ages of 18-40 years with no previous medical history) were studied across 25 lower body-negative pressure protocols. Relationships were assessed using repeated-measures correlation regression models. Results: In total, 33,110 cardiac cycles comprise this analysis; repeated-measures correlation showed a strong, linear relationship between ccFT and VTI. The strength of the ccFT-VTI relationship was dependent on the number of consecutively averaged cardiac cycles (R1 cycle = 0.70, R2 cycles = 0.74, and R10 cycles = 0.81). Conclusions: These results positively support future clinical investigations employing common carotid artery Doppler as a surrogate for central hemodynamics.

9.
J Trauma Acute Care Surg ; 93(2S Suppl 1): S35-S40, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35594422

ABSTRACT

BACKGROUND: We have developed a wireless, wearable Doppler ultrasound system that continuously measures the common carotid artery Doppler pulse. A novel measure from this device, the Doppler shock index, accurately detected moderate-to-severe central blood volume loss in a human hemorrhage model generated by lower body negative pressure. In this analysis, we tested whether the wearable Doppler could identify only mild-to-moderate central blood volume loss. METHODS: Eleven healthy volunteers were recruited and studied in a physiology laboratory at the Mayo Clinic. Each participant underwent a lower body negative protocol in duplicate. Carotid Doppler measures including Doppler shock indices were compared with blood pressure and the shock index for their ability to detect both 10% and 20% reductions in stroke volume. RESULTS: All carotid Doppler measures were better able to detect diminishing stroke volume than either systolic or mean arterial pressure. Falling carotid artery corrected flow time and rising heart rate/corrected flow time (DSI FTc ) were the most sensitive measures for detecting 10% and 20% stroke volume reductions, respectively. The area under the receiver operator curves (AUROCs) for all shock indices was at least 0.86; however, the denominators of the two Doppler shock indices (i.e., the corrected flow time and velocity time integral) had AUROCs ranging between 0.81 and 0.9, while the denominator of the traditional shock index (i.e., systolic blood pressure) had AUROCs between 0.54 and 0.7. CONCLUSION: The wearable Doppler ultrasound was able to continuously measure the common carotid artery Doppler pulse. Carotid Doppler measures were highly sensitive at detecting both 10% and 20% stroke volume reduction. All shock indices performed well in their diagnostic ability to measure mild-to-moderate central volume loss, although the denominators of both Doppler shock indices individually outperformed the denominator of the traditional shock index. LEVEL OF EVIDENCE: Diagnostic test or criteria; Level III.


Subject(s)
Lower Body Negative Pressure , Shock , Arterial Pressure , Blood Flow Velocity , Blood Pressure/physiology , Heart Rate/physiology , Humans , Hypovolemia/diagnostic imaging
10.
PLoS One ; 17(3): e0265711, 2022.
Article in English | MEDLINE | ID: mdl-35320307

ABSTRACT

PURPOSE: We describe the temporal concordance of 3 hemodynamic monitors. MATERIALS AND METHODS: Healthy volunteers performed preload changes while simultaneously wearing a non-invasive, pulse-contour stroke volume (SV) monitor, a bioreactance SV monitor and a wireless, wearable Doppler ultrasound patch over the common carotid artery. The sensitivity and specificity for detecting preload change over 3 temporal windows (early, middle and late) was assessed. RESULTS: 40 preload changes were recorded in total (20 increase, 20 decrease). Immediately, the wearable Doppler had high sensitivity (100%) and specificity (100%) for detecting preload change with an area under the receiver operator curve (AUROC) of 0.98 for both velocity time integral (VTI, 10.5% threshold) and corrected flow time (FTc, 2.5% threshold). The sensitivity, specificity and AUROC for non-invasive pulse contour were equally good (9% SV threshold). For bioreactance, a 13% SV threshold immediately detected preload change with a sensitivity, specificity and AUROC of 60%, 95% and 0.75, respectively. After two SV outputs following preload change, the sensitivity, specificity and AUROC of bioreactance improved to 70%, 90% and 0.85, respectively. CONCLUSIONS: Carotid Doppler ultrasound and non-invasive pulse contour detected rapid hemodynamic change with equal accuracy; bioreactance improved over time. Algorithm-lag should be considered when interpreting clinical studies.


Subject(s)
Hemodynamic Monitoring , Hemodynamics , Humans , Monitoring, Physiologic , Stroke Volume , Ultrasonography, Doppler
11.
BMC Res Notes ; 15(1): 7, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35012624

ABSTRACT

OBJECTIVE: Doppler ultrasonography of the common carotid artery is used to infer stroke volume change and a wearable Doppler ultrasound has been designed to improve this workflow. Previously, in a human model of hemorrhage and resuscitation comprising approximately 50,000 cardiac cycles, we found a strong, linear correlation between changing stroke volume, and measures from the carotid Doppler signal, however, optimal Doppler thresholds for detecting a 10% stroke volume change were not reported. In this Research Note, we present these thresholds, their sensitivities, specificities and areas under their receiver operator curves (AUROC). RESULTS: Augmentation of carotid artery maximum velocity time integral and corrected flowtime by 18% and 4%, respectively, accurately captured 10% stroke volume rise. The sensitivity and specificity for these thresholds were identical at 89% and 100%. These data are similar to previous investigations in healthy volunteers monitored by the wearable ultrasound.


Subject(s)
Carotid Arteries , Wearable Electronic Devices , Blood Flow Velocity , Carotid Arteries/diagnostic imaging , Carotid Artery, Common , Hemorrhage , Humans , Stroke Volume , Ultrasonography, Doppler
12.
Bioengineering (Basel) ; 8(12)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34940356

ABSTRACT

BACKGROUND: A novel, wireless, ultrasound biosensor that adheres to the neck and measures real-time Doppler of the carotid artery may be a useful functional hemodynamic monitor. A unique experimental set-up during elective coronary artery bypass surgery is described as a means to compare the wearable Doppler to trans-esophageal echocardiography (TEE). METHODS: A total of two representative patients were studied at baseline and during Trendelenburg position. Carotid Doppler spectra from the wearable ultrasound and TEE were synchronously captured. Areas under the receiver operator curve (AUROC) were performed to assess the accuracy of changing common carotid artery velocity time integral (ccVTI∆) at detecting a clinically significant change in stroke volume (SV∆). RESULTS: Synchronously measuring and comparing Doppler spectra from the wearable ultrasound and TEE is feasible during Trendelenburg positioning. In two representative cardiac surgical patients, the ccVTI∆ accurately detected a clinically significant SV∆ with AUROCs of 0.89, 0.91, and 0.95 when single-beat, 3-consecutive beat and 10-consecutive beat averages were assessed, respectively. CONCLUSION: In this proof-of-principle research communication, a wearable Doppler ultrasound system is successfully compared to TEE. Preliminary data suggests that the diagnostic accuracy of carotid Doppler ultrasonography at detecting clinically significant SV∆ is enhanced by averaging more cardiac cycles.

13.
J Am Coll Emerg Physicians Open ; 2(4): e12533, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34401869

ABSTRACT

OBJECTIVE: Moderate-to-severe hemorrhage is a life-threatening condition, which is challenging to detect in a timely fashion using traditional vital signs because of the human body's robust physiologic compensatory mechanisms. Measuring and trending blood flow could improve diagnosis of clinically significant exsanguination. A lightweight, wireless, wearable Doppler ultrasound patch that captures and trends blood flow velocity could enhance hemorrhage detection. METHODS: In 11 healthy volunteers undergoing simulated hemorrhage and resuscitation during graded lower body negative pressure (LBNP) and release, we studied the relationship between stroke volume (SV) and common carotid artery velocity time integral (VTI) and corrected flow time (FTc). We assessed the diagnostic accuracy of 2 variations of a novel metric, the Doppler shock index (ie, the DSIVTI and DSIFTc), at capturing moderate-to-severe central hypovolemia defined as a 30% reduction in SV. The DSIVTI and DSIFTc are calculated as the heart rate divided by either the VTI or FTc, respectively. RESULTS: A total of 17,822 cardiac cycles were analyzed across 22 LBNP protocols. The average SV reduction to the lowest tolerated LBNP stage was 40%; there was no clinically significant fall in the mean arterial pressure. Correlations between changing SV and the common carotid artery VTI and FTc were strong (R 2 of 0.87, respectively) and concordant. The DSIVTI and DSIFTc accurately detected moderate-to-severe central hypovolemia with values for the area under the receiver operator curves of 0.96 and 0.97, respectively. CONCLUSION: In a human model of hemorrhage and resuscitation, measures from a wearable Doppler ultrasound patch correlated strongly with SV and identified moderate-to-severe central hypovolemia with excellent diagnostic accuracy.

14.
Crit Care Explor ; 3(6): e0439, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34136821

ABSTRACT

Carotid Doppler ultrasound is used as a measure of fluid responsiveness, however, assessing change with statistical confidence requires an adequate beat sample size. The coefficient of variation helps quantify the number of cardiac cycles needed to adequately detect change during functional hemodynamic monitoring. DESIGN: Prospective, observational, human model of hemorrhage and resuscitation. SETTING: Human physiology laboratory at Mayo Clinic. SUBJECTS: Healthy volunteers. INTERVENTIONS: Lower body negative pressure. MEASUREMENTS AND MAIN RESULTS: We measured the coefficient of variation of the carotid artery velocity time integral and corrected flow time during significant cardiac preload changes. Seventeen-thousand eight-hundred twenty-two cardiac cycles were analyzed. The median coefficient of variation of the carotid velocity time integral was 8.7% at baseline and 11.9% during lowest-tolerated lower body negative pressure stage. These values were 3.6% and 4.6%, respectively, for the corrected flow time. CONCLUSIONS: The median coefficient of variation values measured in this large dataset indicates that at least 6 cardiac cycles should be averaged before and after an intervention when using the carotid artery as a functional hemodynamic measure.

16.
Sci Rep ; 11(1): 7780, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33833288

ABSTRACT

Quantitative Doppler ultrasound of the carotid artery has been proposed as an instantaneous surrogate for monitoring rapid changes in left ventricular output. Tracking immediate changes in the arterial Doppler spectrogram has value in acute care settings such as the emergency department, operating room and critical care units. We report a novel, hands-free, continuous-wave Doppler ultrasound patch that adheres to the neck and tracks Doppler blood flow metrics in the common carotid artery using an automated algorithm. String and blood-mimicking test objects demonstrated that changes in velocity were accurately measured using both manually and automatically traced Doppler velocity waveforms. In a small usability study with 22 volunteer users (17 clinical, 5 lay), all users were able to locate the carotid Doppler signal on a volunteer subject, and, in a subsequent survey, agreed that the device was easy to use. To illustrate potential clinical applications of the device, the Doppler ultrasound patch was used on a healthy volunteer undergoing a passive leg raise (PLR) as well as on a congestive heart failure patient at resting baseline. The wearable carotid Doppler patch holds promise because of its ease-of-use, velocity measurement accuracy, and ability to continuously record Doppler spectrograms over many cardiac and respiratory cycles.


Subject(s)
Carotid Arteries/diagnostic imaging , Intensive Care Units , Point-of-Care Testing , Ultrasonography, Doppler/instrumentation , Adult , Aged, 80 and over , Female , Humans , Male , Proof of Concept Study
17.
Mil Med ; 186(Suppl 1): 751-756, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33499507

ABSTRACT

INTRODUCTION: Early hemorrhage is often missed by traditional vital signs because of physiological reserve, especially in the young and healthy. We have developed a novel, wearable, wireless Doppler ultrasound patch that tracks real-time blood velocity in the common carotid artery. MATERIALS AND METHODS: We studied eight healthy volunteers who decreased their cardiac output using a standardized Valsalva maneuver. In all eight, we simultaneously monitored the velocity time integral (VTI) of the common carotid artery (using the ultrasound patch) as well as the descending aorta (using a traditional pulsed wave duplex imaging system); the descending aortic VTI was used as a surrogate for left ventricular stroke volume (SV). Additionally, in a subset of four, we simultaneously measured SV using a noninvasive pulse contour analysis device. RESULTS: From baseline to peak effect of Valsalva, there was a statistically significant fall in descending aortic and common carotid VTI of 37% (P = 0.0005) and 23% (P < 0.0001), respectively. Both values returned to baseline on recovery. Additionally, a novel index from the carotid ultrasound patch (i.e., the heart rate divided by the carotid artery VTI) detected a 10% fall in aortic VTI with high sensitivity and specificity (100% and 100%, respectively); this novel index also accurately detected a 10% decrease in SV as measured by the noninvasive SV monitor. The mean arterial pressure, measured by the noninvasive pulse contour device, did not correctly detect the fall in SV. CONCLUSION: In summary, a novel index from a wireless Doppler ultrasound patch may be more sensitive and specific for detecting decreased cardiac output than standard vital signs in healthy volunteers.


Subject(s)
Ultrasonography, Doppler , Adult , Blood Flow Velocity , Cardiac Output , Feasibility Studies , Healthy Volunteers , Humans , Stroke Volume
18.
Front Med Technol ; 3: 676995, 2021.
Article in English | MEDLINE | ID: mdl-35047930

ABSTRACT

The Frank-Starling relationship is a fundamental concept in cardiovascular physiology, relating change in cardiac filling to its output. Historically, this relationship has been measured by physiologists and clinicians using invasive monitoring tools, relating right atrial pressure (P ra) to stroke volume (SV) because the P ra-SV slope has therapeutic implications. For example, a critically ill patient with a flattened P ra-SV slope may have low P ra yet fail to increase SV following additional cardiac filling (e.g., intravenous fluids). Provocative maneuvers such as the passive leg raise (PLR) have been proposed to identify these "fluid non-responders"; however, simultaneously measuring cardiac filling and output via non-invasive methods like ultrasound is cumbersome during a PLR. In this Hypothesis and Theory submission, we suggest that a wearable Doppler ultrasound can infer the P ra-SV relationship by simultaneously capturing jugular venous and carotid arterial Doppler in real time. We propose that this method would confirm that low cardiac filling may associate with poor response to additional volume. Additionally, simultaneous assessment of venous filling and arterial output could help interpret and compare provocative maneuvers like the PLR because change in cardiac filling can be confirmed. If our hypothesis is confirmed with future investigation, wearable monitors capable of monitoring both variables of the Frank-Starling relation could be helpful in the ICU and other less acute patient settings.

19.
Health Sci Rep ; 3(4): e190, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33033751

ABSTRACT

BACKGROUND AND AIMS: To test the feasibility of a novel, wearable carotid Doppler ultrasound to track changes in cardiac output induced by end-inspiratory and end-expiratory occlusion tests. METHODS: We observed the pattern of Doppler change of the common carotid artery during a simulated end-inspiratory and expiratory occlusion test (sEIOT/sEEOT) in 10, nonventilated, healthy subjects. Simultaneously, we measured the Doppler signal of the descending aorta using duplex ultrasound (Xario, Toshiba Medical Systems) and stroke volume (SV) using noninvasive pulse contour analysis (Clearsight, Edwards Lifesciences, Irvine, California). RESULTS: During sEIOT, SV, maximum velocity time integral (VTI) of the descending aorta, and common carotid fell by 25.7% (P = .0131), 26.1% (P < .0001), and 18.5% (P < .0001), respectively. During sEEOT, SV, maximum VTI of the descending aorta, and common carotid rose by: 41.3% (P = .0051), 28.3% (P < .0001), and 41.6% (P < .0001), respectively. There was good correlation between change in aortic VTI and carotid VTI (r 2 = 0.79); SV and aortic VTI (r 2 = 0.82), and SV and carotid VTI (r 2 = 0.95).The coefficient of variation of the VTI measured by the Doppler patch was roughly 60% less than that of the duplex system. CONCLUSIONS: The pattern of SV change induced by a sEIOT/sEEOT in nonmechanically ventilated volunteers is reflected in the common carotid artery and descending aorta. The VTI variability of the Doppler patch was less than that of the traditional, duplex Doppler.

20.
Intensive Care Med Exp ; 8(1): 54, 2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32940808

ABSTRACT

BACKGROUND: Change of the corrected flow time (Ftc) is a surrogate for tracking stroke volume (SV) in the intensive care unit. Multiple Ftc equations have been proposed; many have not had their diagnostic characteristics for detecting SV change reported. Further, little is known about the inherent Ftc variability induced by the respiratory cycle. MATERIALS AND METHODS: Using a wearable Doppler ultrasound patch, we studied the clinical performance of 11 Ftc equations to detect a 10% change in SV measured by non-invasive pulse contour analysis; 26 healthy volunteers performed a standardized cardiac preload modifying maneuver. RESULTS: One hundred changes in cardiac preload and 3890 carotid beats were analyzed. Most of the 11 Ftc equations studied had similar diagnostic attributes. Wodeys' and Chambers' formulae had identical results; a 2% change in Ftc detected a 10% change in SV with a sensitivity and specificity of 96% and 93%, respectively. Similarly, a 3% change in Ftc calculated by Bazett's formula displayed a sensitivity and specificity of 91% and 93%. FtcWodey had 100% concordance and an R2 of 0.75 with change in SV; these values were 99%, 0.76 and 98%, 0.71 for FtcChambers and FtcBazetts, respectively. As an exploratory analysis, we studied 3335 carotid beats for the dispersion of Ftc during quiet breathing using the equations of Wodey and Bazett. The coefficient of variation of Ftc during quiet breathing for these formulae were 0.06 and 0.07, respectively. CONCLUSIONS: Most of the 11 different equations used to calculate carotid artery Ftc from a wearable Doppler ultrasound patch had similar thresholds and abilities to detect SV change in healthy volunteers. Variation in Ftc induced by the respiratory cycle is important; measuring a clinically significant change in Ftc with statistical confidence requires a large sample of beats.

SELECTION OF CITATIONS
SEARCH DETAIL
...