Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Placenta ; 36(11): 1329-32, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26386652

ABSTRACT

Cells of the human amniotic membrane (hAM) have stem cell characteristics with low immunogenicity and anti-inflammatory properties. While hAM is an excellent source for tissue engineering, so far, its sub-regions have not been taken into account. We show that placental and reflected hAM differ distinctly in morphology and functional activity, as the placental region has significantly higher mitochondrial activity, however significantly less reactive oxygen species. Since mitochondria may participate in processes such as cell rescue, we speculate that amniotic sub-regions may have different potential for tissue regeneration, which may be crucial for clinical applications.


Subject(s)
Amnion/metabolism , Amnion/cytology , Cell Respiration , Female , Humans , Membrane Potential, Mitochondrial , Pregnancy
2.
Cell Tissue Bank ; 15(2): 213-25, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24828570

ABSTRACT

Human amniotic membrane (hAM) represents a tissue that is well established as biomaterial in the clinics with potential for new applications in regenerative medicine. For tissue engineering (TE) strategies, cells are usually combined with inductive factors and a carrier substrate. We have previously recognized that hAM represents a natural, preformed sheet including highly potent stem cells. In the present approach for cartilage regeneration we have induced chondrogenesis in hAM in vitro. For this, hAM biopsies were cultured for up to 56 days under chondrogenic conditions. The induced hAM was characterized for remaining viability, glycosaminoglycan (GAG) accumulation using histochemical analysis, and a quantitative assay. Collagen I, II and X was immunohistochemically determined and cartilage-specific mRNA expression of (sex determining region Y-) box 9, cartilage oligomeric matrix protein (COMP), aggrecan (AGC1), versican (CSPG2), COL1A1, COL9A2, melanoma inhibitory activity (MIA), and cartilage-linking protein 1 (CRTL1) analyzed by quantitative real-time polymerase chain reaction. Human AM was successfully induced to accumulate GAG, as demonstrated by Alcianblue staining and a significant (p < 0.001) increase of GAG/viability under chondrogenic conditions peaking in a 29.9 ± 0.9-fold induction on day 56. Further, upon chondrogenic induction collagen II positive areas were identified within histological sections and cartilage-specific markers including COMP, AGC1, CSPG2, COL1A1, COL9A2, MIA, and CRTL1 were found upregulated at mRNA level. This is the first study, demonstrating that upon in vitro induction viable human amnion expresses cartilage-specific markers and accumulates GAGs within the biomatrix. This is a promising first step towards a potential use of living hAM for cartilage TE.


Subject(s)
Amnion/cytology , Cell Differentiation , Cell Lineage/physiology , Chondrogenesis/physiology , Placenta/cytology , Cartilage/cytology , Cell Differentiation/physiology , Cells, Cultured , Female , Humans , Pregnancy , Stem Cells/cytology
3.
Cell Tissue Bank ; 15(2): 227-39, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24166477

ABSTRACT

Human amniotic membrane (hAM) is a tissue containing cells with proven stem cell properties. In its decellularized form it has been successfully applied as nerve conduit biomaterial to improve peripheral nerve regeneration in injury models. We hypothesize that viable hAM without prior cell isolation can be differentiated towards the Schwann cell lineage to generate a possible alternative to commonly applied tissue engineering materials for nerve regeneration. For in vitro Schwann cell differentiation, biopsies of hAM of 8 mm diameter were incubated with a sequential order of neuronal induction and growth factors for 21 days and characterized for cellular viability and the typical glial markers glial fibrillary acidic protein (GFAP), S100ß, p75 and neurotrophic tyrosine kinase receptor (NTRK) using immunohistology. The secretion of the neurotrophic factors brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor (GDNF) was quantified by ELISA. The hAM maintained high viability, especially under differentiation conditions (90.2 % ± 41.6 day 14; 80.0 % ± 44.5 day 21 compared to day 0). Both, BDNF and GDNF secretion was up-regulated upon differentiation. The fresh membrane stained positive for GFAP and p75 and NTRK, which was strongly increased after culture in differentiation conditions. Especially the epithelial layer within the membrane exhibited a change in morphology upon differentiation forming a multi-layered epithelium with intense accumulations of the marker proteins. However, S100ß was expressed at equal levels and equal distribution in fresh and cultured hAM conditions. Viable hAM may be a promising alternative to present formulations used for peripheral nerve regeneration.


Subject(s)
Amnion/cytology , Cell Differentiation/physiology , Cell Lineage/physiology , Cell Separation , Schwann Cells/cytology , Amnion/metabolism , Cells, Cultured , Humans , Regeneration/physiology , Stem Cells/cytology
4.
Biomaterials ; 31(33): 8659-65, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20719379

ABSTRACT

Tissue engineering strategies usually require cell isolation and combination with a suitable biomaterial. Human amniotic membrane (AM) represents a natural two-layered sheet comprising cells with proven stem cell characteristics. In our approach, we evaluated the differentiation potential of AM in toto with its sessile stem cells as alternative to conventional approaches requiring cell isolation and combination with biomaterials. For this, AM-biopsies were differentiated in vitro using two osteogenic media compared with control medium (CM) for 28 days. Mineralization and osteocalcin expression was demonstrated by (immuno)histochemistry. Alkaline phosphatase (AP) activity, calcium contents and mRNA expression of RUNX2, AP, osteopontin, osteocalcin, BMP-2 (bone morphogenetic protein), and BMP-4 were quantified and AM viability was evaluated. Under osteogenic conditions, AM-biopsies mineralized successfully and by day 28 the majority of cells expressed osteocalcin. This was confirmed by a significant rise in calcium contents (up to 27.4 ± 6.8 mg/dl d28), increased AP activity, and induction of RUNX2, AP, BMP-2 and BMP-4 mRNA expression. Relatively high levels of viability were retained, especially in osteogenic media (up to 78.3 ± 19.0% d14; 62.9 ± 22.3% d28) compared to CM (42.2 ± 15.2% d14; 35.1 ± 8.6% d28). By this strategy, stem cells within human AM can successfully be driven along the osteogenic pathways while residing within their natural environment.


Subject(s)
Amnion/cytology , Cell Differentiation , Osteogenesis , Alkaline Phosphatase/metabolism , Amnion/drug effects , Amnion/enzymology , Biomarkers/metabolism , Calcium/metabolism , Cell Differentiation/drug effects , Cell Survival/drug effects , Cells, Cultured , Culture Media/pharmacology , Gene Expression Regulation/drug effects , Humans , Intracellular Space/drug effects , Intracellular Space/enzymology , Osteogenesis/drug effects , Reverse Transcriptase Polymerase Chain Reaction
5.
Cell Tissue Bank ; 8(1): 1-8, 2007.
Article in English | MEDLINE | ID: mdl-16807768

ABSTRACT

Up to now freeze-dried, gamma-sterilised or glycerol-preserved amniotic membranes (AMs) have widely been used in the field of ophthalmology and wound care (e.g. leg ulcers, burns). After some preservation processes in use, like freeze-drying or glycerol-preserving, the cells in the AM are no longer viable. Within this study we evaluated the influence of different short-term and long-term storage conditions on cell viability in AM. Therefore AMs from cesarean section placentae were washed and biopsied to evaluate the microbiological status and to determine the viability of the tissue. Additionally, viability under various storage conditions was examined by assessment of mitochondrial activity. Preservation included temperatures above and below 0 degrees C as well as various media compositions. As expected, cell viability in amnion decreases during storage, in fact the effect was more pronounced when stored frozen, but the higher viability of amnion obtained by storage above 0 degrees C with medium is associated with the limitation to a short period of storage of about 28 days. The evaluated preservation methods are the basis for future non-clinical in-vivo studies in which the possible benefit of amnion as a viable biomaterial in wound healing will be investigated.


Subject(s)
Amnion/cytology , Preservation, Biological/methods , Bacteria/isolation & purification , Biopsy , Cell Survival , Culture Media , Female , Freezing , Humans , Nitrogen , Pregnancy , Staining and Labeling , Trypan Blue/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...