Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(6)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36991939

ABSTRACT

Despite the progress in driving automation, the market introduction of higher-level automation has not yet been achieved. One of the main reasons for this is the effort in safety validation to prove functional safety to the customer. However, virtual testing may compromise this challenge, but the modelling of machine perception and proving its validity has not been solved completely. The present research focuses on a novel modelling approach for automotive radar sensors. Due to the complex high-frequency physics of radars, sensor models for vehicle development are challenging. The presented approach employs a semi-physical modelling approach based on experiments. The selected commercial automotive radar was applied in on-road tests where the ground truth was recorded with a precise measurement system installed in ego and target vehicles. High-frequency phenomena were observed and reproduced in the model on the one hand by using physically based equations such as antenna characteristics and the radar equation. On the other hand, high-frequency effects were statistically modelled using adequate error models derived from the measurements. The model was evaluated with performance metrics developed in previous works and compared to a commercial radar sensor model. Results show that, while keeping real-time performance necessary for X-in-the-loop applications, the model is able to achieve a remarkable fidelity as assessed by probability density functions of the radar point clouds and using the Jensen-Shannon divergence. The model delivers values of radar cross-section for the radar point clouds that correlate well with measurements comparable with the Euro NCAP Global Vehicle Target Validation process. The model outperforms a comparable commercial sensor model.

2.
Sensors (Basel) ; 22(22)2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36433375

ABSTRACT

The safety approval and assessment of automated driving systems (ADS) are becoming sophisticated and challenging tasks. Because the number of traffic scenarios is vast, it is essential to assess their criticality and extract the ones that present a safety risk. In this paper, we are proposing a novel method based on the time-to-react (TTR) measurement, which has advantages in considering avoidance possibilities. The method incorporates the concept of fictive vehicles and variable criticality thresholds (VCTs) to assess the overall scenario's criticality. By introducing variable thresholds, a criticality scale is defined and used for criticality calculation. Based on this scale, the presented method determines the criticality of the lanes adjacent to the ego vehicle. This is performed by placing fictive vehicles in the adjacent lanes, which represent copies of the ego. The effectiveness of the method is demonstrated in two highway scenarios, with and without trailing vehicles. Results show different criticality for the two scenarios. The overall criticality of the scenario with trailing vehicles is higher due to the decrease in avoidance possibilities for the ego vehicle.

3.
Sensors (Basel) ; 22(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35957250

ABSTRACT

Radar sensors were among the first perceptual sensors used for automated driving. Although several other technologies such as lidar, camera, and ultrasonic sensors are available, radar sensors have maintained and will continue to maintain their importance due to their reliability in adverse weather conditions. Virtual methods are being developed for verification and validation of automated driving functions to reduce the time and cost of testing. Due to the complexity of modelling high-frequency wave propagation and signal processing and perception algorithms, sensor models that seek a high degree of accuracy are challenging to simulate. Therefore, a variety of different modelling approaches have been presented in the last two decades. This paper comprehensively summarises the heterogeneous state of the art in radar sensor modelling. Instead of a technology-oriented classification as introduced in previous review articles, we present a classification of how these models can be used in vehicle development by using the V-model originating from software development. Sensor models are divided into operational, functional, technical, and individual models. The application and usability of these models along the development process are summarised in a comprehensive tabular overview, which is intended to support future research and development at the vehicle level and will be continuously updated.

4.
Sensors (Basel) ; 22(4)2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35214205

ABSTRACT

(1) Background: Due to its high safety potential, one of the most common ADAS technologies is the lane support system (LSS). The main purpose of LSS is to prevent road accidents caused by road departure or entrance in the lane of other vehicles. Such accidents are especially common on rural roads during nighttime. In order for LSS to function properly, road markings should be properly maintained and have an adequate level of visibility. During nighttime, the visibility of road markings is determined by their retroreflectivity. The aim of this study is to investigate how road markings' retroreflectivity influences the detection quality and the view range of LSS. (2) Methods: An on-road investigation comprising measurements using Mobileye and a dynamic retroreflectometer was conducted on four rural roads in Croatia. (3) Results: The results show that, with the increase of markings' retroreflection, the detection quality and the range of view of Mobileye increase. Additionally, it was determined that in "ideal" conditions, the minimal value of retroreflection for a minimum level 2 detection should be above 55 mcd/lx/m2 and 88 mcd/lx/m2 for the best detection quality (level 3). The results of this study are valuable to researchers, road authorities and policymakers.


Subject(s)
Accidents, Traffic , Automobile Driving , Accidents, Traffic/prevention & control , Croatia , Data Collection , Technology
5.
Sci Rep ; 12(1): 2650, 2022 02 16.
Article in English | MEDLINE | ID: mdl-35173189

ABSTRACT

Drowsiness is a leading cause of accidents on the road as it negatively affects the driver's ability to safely operate a vehicle. Neural activity recorded by EEG electrodes is a widely used physiological correlate of driver drowsiness. This paper presents a novel dynamical modeling solution to estimate the instantaneous level of the driver drowsiness using EEG signals, where the PERcentage of eyelid CLOSure (PERCLOS) is employed as the ground truth of driver drowsiness. Applying our proposed modeling framework, we find neural features present in EEG data that encode PERCLOS. In the decoding phase, we use a Bayesian filtering solution to estimate the PERCLOS level over time. A data set that comprises 18 driving tests, conducted by 13 drivers, has been used to investigate the performance of the proposed framework. The modeling performance in estimation of PERCLOS provides robust and repeatable results in tests with manual and automated driving modes by an average RMSE of 0.117 (at a PERCLOS range of 0 to 1) and average High Probability Density percentage of 62.5%. We further hypothesized that there are biomarkers that encode the PERCLOS across different driving tests and participants. Using this solution, we identified possible biomarkers such as Theta and Delta powers. Results show that about 73% and 66% of the Theta and Delta powers which are selected as biomarkers are increasing as PERCLOS grows during the driving test. We argue that the proposed method is a robust and reliable solution to estimate drowsiness in real-time which opens the door in utilizing EEG-based measures in driver drowsiness detection systems.


Subject(s)
Automobile Driving , Electroencephalography/methods , Monitoring, Physiologic/methods , Sleepiness/physiology , Bayes Theorem , Biomarkers , Delta Rhythm/physiology , Eyelids/physiology , Female , Humans , Male , Theta Rhythm/physiology
6.
Sensors (Basel) ; 21(6)2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33808936

ABSTRACT

A spectacular measurement campaign was carried out on a real-world motorway stretch of Hungary with the participation of international industrial and academic partners. The measurement resulted in vehicle based and infrastructure based sensor data that will be extremely useful for future automotive R&D activities due to the available ground truth for static and dynamic content. The aim of the measurement campaign was twofold. On the one hand, road geometry was mapped with high precision in order to build Ultra High Definition (UHD) map of the test road. On the other hand, the vehicles-equipped with differential Global Navigation Satellite Systems (GNSS) for ground truth localization-carried out special test scenarios while collecting detailed data using different sensors. All of the test runs were recorded by both vehicles and infrastructure. The paper also showcases application examples to demonstrate the viability of the collected data having access to the ground truth labeling. This data set may support a large variety of solutions, for the test and validation of different kinds of approaches and techniques. As a complementary task, the available 5G network was monitored and tested under different radio conditions to investigate the latency results for different measurement scenarios. A part of the measured data has been shared openly, such that interested automotive and academic parties may use it for their own purposes.

7.
Sensors (Basel) ; 19(4)2019 Feb 22.
Article in English | MEDLINE | ID: mdl-30813386

ABSTRACT

This paper presents a novel feature selection method to design a non-invasive driver drowsiness detection system based on steering wheel data. The proposed feature selector can select the most related features to the drowsiness level to improve the classification accuracy. This method is based on the combination of the filter and wrapper feature selection algorithms using adaptive neuro-fuzzy inference system (ANFIS). In this method firstly, four different filter indexes are applied on extracted features from steering wheel data. After that, output values of each filter index are imported as inputs to a fuzzy inference system to determine the importance degree of each feature and select the most important features. Then, the selected features are imported to a support vector machine (SVM) for binary classification to classify the driving conditions in two classes of drowsy and awake. Finally, the classifier accuracy is exploited to adjust parameters of an adaptive fuzzy system using a particle swarm optimization (PSO) algorithm. The experimental data were collected from about 20.5 h of driving in the simulator. The results show that the drowsiness detection system is working with a high accuracy and also confirm that this method is more accurate than the recent available algorithms.

8.
Traffic Inj Prev ; 19(3): 332-337, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29227692

ABSTRACT

OBJECTIVE: This study investigated drivers' evaluation of a conventional autonomous emergency braking (AEB) system on high and reduced tire-road friction and compared these results to those of an AEB system adaptive to the reduced tire-road friction by earlier braking. Current automated systems such as the AEB do not adapt the vehicle control strategy to the road friction; for example, on snowy roads. Because winter precipitation is associated with a 19% increase in traffic crashes and a 13% increase in injuries compared to dry conditions, the potential of conventional AEB to prevent collisions could be significantly improved by including friction in the control algorithm. Whereas adaption is not legally required for a conventional AEB system, higher automated functions will have to adapt to the current tire-road friction because human drivers will not be required to monitor the driving environment at all times. For automated driving functions to be used, high levels of perceived safety and trust of occupants have to be reached with new systems. The application case of an AEB is used to investigate drivers' evaluation depending on the road condition in order to gain knowledge for the design of future driving functions. METHODS: In a driving simulator, the conventional, nonadaptive AEB was evaluated on dry roads with high friction (µ = 1) and on snowy roads with reduced friction (µ = 0.3). In addition, an AEB system adapted to road friction was designed for this study and compared with the conventional AEB on snowy roads with reduced friction. Ninety-six drivers (48 males, 48 females) assigned to 5 age groups (20-29, 30-39, 40-49, 50-59, and 60-75 years) drove with AEB in the simulator. The drivers observed and evaluated the AEB's braking actions in response to an imminent rear-end collision at an intersection. RESULTS: The results show that drivers' safety and trust in the conventional AEB were significantly lower on snowy roads, and the nonadaptive autonomous braking strategy was considered less appropriate on snowy roads compared to dry roads. As expected, the adaptive AEB braking strategy was considered more appropriate for snowy roads than the nonadaptive strategy. In conditions of reduced friction, drivers' subjective safety and trust were significantly improved when driving with the adaptive AEB compared to the conventional AEB. Women felt less safe than men when AEB was braking. Differences between age groups were not of statistical significance. CONCLUSIONS: Drivers notice the adaptation of the autonomous braking strategy on snowy roads with reduced friction. On snowy roads, they feel safer and trust the adaptive system more than the nonadaptive automation.


Subject(s)
Accident Prevention/instrumentation , Accidents, Traffic/prevention & control , Automobile Driving/psychology , Protective Devices/statistics & numerical data , Wounds and Injuries/prevention & control , Adult , Aged , Algorithms , Deceleration , Emergencies , Female , Friction , Humans , Male , Middle Aged , Reaction Time , Safety , Young Adult
9.
Sensors (Basel) ; 14(9): 17832-47, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-25256113

ABSTRACT

This study proposes a drowsiness detection approach based on the combination of several different detection methods, with robustness to the input signal loss. Hence, if one of the methods fails for any reason, the whole system continues to work properly. To choose correct combination of the available methods and to utilize the benefits of methods of different categories, an image processing-based technique as well as a method based on driver-vehicle interaction is used. In order to avoid driving distraction, any use of an intrusive method is prevented. A driving simulator is used to gather real data and then artificial neural networks are used in the structure of the designed system. Several tests were conducted on twelve volunteers while their sleeping situations during one day prior to the tests, were fully under control. Although the impact of the proposed system on the improvement of the detection accuracy is not remarkable, the results indicate the main advantages of the system are the reliability of the detections and robustness to the loss of the input signals. The high reliability of the drowsiness detection systems plays an important role to reduce drowsiness related road accidents and their associated costs.


Subject(s)
Automobile Driving , Electroencephalography , Sleep Stages/physiology , Humans , Neural Networks, Computer , Signal Processing, Computer-Assisted , Sleep
SELECTION OF CITATIONS
SEARCH DETAIL
...