Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 13(21)2020 Oct 31.
Article in English | MEDLINE | ID: mdl-33142898

ABSTRACT

Rational manipulation of secondary bonding interactions is a crucial factor in the construction of new chalcogenadiazole-based materials. This article reports detailed experimental studies on phenanthro[9,10-c][1,2,5]chalcogenadiazolium and 2,1,3-benzochalcogenadiazolium salts and their precursors. The compounds were synthesized, characterized employing NMR and UV-Vis spectroscopy. TD-DFT calculations were also performed. The influence of the size of the aromatic system on the molecular motifs formed by the compounds in the solid state has been studied by means of single-crystal X-ray diffraction. In case of the salts, the nature of an anion was also taken into consideration. The results show that cyclic [E···N]2 supramolecular synthon connects neighboring molecules of phenanthro[9,10-c][1,2,5]chalcogenadiazoles, with a relatively large aromatic system, in dimers regardless of the chalcogen atom in the molecule. Both N-methyl-2,1,3-benzothiadiazolium and N-methylphenanthro[9,10-c][1,2,5]chalcogenadiazolium cations have a strong affinity for triflate and iodide anions, therefore the formation of S···N or Se···N secondary bonding interactions is observed only in two out of the eight quaternary salts. Less coordinating anions must be used to enable the building blocks studied to form cyclic [E···N]2 synthons. Moreover, for two of the triflate salts, which are isostructural, a new supramolecular motif has been observed.

2.
Chemistry ; 25(12): 3091-3097, 2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30548937

ABSTRACT

Directional self-assembly of uncharged molecules in water is a major challenge in supramolecular chemistry. Herein, it is demonstrated that peptide-based cavitands wrap around a hydrophobic core (fullerene C60 ) by a combination of the hydrophobic effect and hydrogen-bonding interactions to form highly ordered three-component complexes in water that resemble the molten-globule stage of protein folding. The complexes were characterized by DOSY NMR spectroscopy, small-angle X-ray scattering, and circular dichroism, and their structures were confirmed by X-ray crystallography. Enhancement of the CD signals by nearly one order of magnitude and increased hydrolytic stability of hydrazone bonds of the complexes relative to the nonassembled species were observed. In contrast, DMSO and DMSO/water mixtures were found to be highly disintegrative for these complexes. Interestingly, some cavitands can only be synthesized in the presence of the hydrophobic template followed by disassembly of the complexes.

3.
J Am Chem Soc ; 139(27): 9376-9381, 2017 07 12.
Article in English | MEDLINE | ID: mdl-28627882

ABSTRACT

The "off" state for aminocatalysis by a switchable [2]rotaxane is shown to correspond to an "on" state for anion-binding catalysis. Conversely, the aminocatalysis "on" state of the dual-function rotaxane is inactive in anion-binding catalysis. Switching between the different states is achieved through the stimuli-induced change of position of the macrocycle on the rotaxane thread. The anion-binding catalysis results from a pair of triazolium groups that act together to CH-hydrogen-bond to halide anions when the macrocycle is located on an alternative (ammonium) binding site, stabilizing the in situ generation of benzhydryl cation and oxonium ion intermediates from activated alkyl halides. The aminocatalysis and anion-binding catalysis sites of the dual-function rotaxane catalyst can be sequentially concealed or revealed, enabling catalysis of both steps of a tandem reaction process.

4.
Acta Crystallogr Sect E Struct Rep Online ; 69(Pt 1): o144-5, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23476399

ABSTRACT

The structure of the title mol-ecule, C16H19N5O7, is mainly determined by the steric effect of a bulky 2,4,6-trinitro-phenyl group attached to the N atom of a pyrrolidine ring. Both pyrrolidine rings adopt an envelope conformation, with one of the methylene C atoms as the flap in each case, and the N-C-C-N torsion angle along the bond connecting the two pyrrolidine rings is -174.9 (2)°. The benzene ring of the 2,3,5-trinitro-phenyl substituent is deformed and the r.m.s. deviation of its six atoms from the best plane is 0.026 Å. The N atoms of the two nitro groups in the ortho positions deviate from the best plane of the benzene ring by -0.033 (5) and 0.385 (5) Å. These groups, as well as the pyrrolidine ring, are twisted relative to the aromatic ring in the same direction, their best planes forming dihedral angles of 30.2 (2), 64.8 (1) and 46.6 (2)°, respectively, with the ring. An intra-molecular C-H⋯O hydrogen bond occurs. In the crystal, there is a short [O⋯C = 3.019 (4) Å] contact between a nitro O atom and a C atom of the benzene ring bearing the nitro group and a C-H⋯O inter-action between a methyl H atom and another nitro O atom.

SELECTION OF CITATIONS
SEARCH DETAIL
...