Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 9: 304, 2018.
Article in English | MEDLINE | ID: mdl-29666580

ABSTRACT

A detannified methanolic extract of Scrophularia lucida L. attenuated the formation of cancer cell-induced circular chemorepellent induced defects (CCIDs) in the lymph endothelial cell barrier, which resemble entry ports for the intravasating tumor into the vasculature as a prerequisite for lymph node metastasis. Therefore, the composition of this extract was studied in an activity-guided approach. Since no data on the secondary metabolites of this plant were available, first phytochemical data were collected in the course of the fractionation of the extract. The study resulted in the identification of 14 substances, among them very rare iridoids, such as scrovalentinoside or koelzioside, and several flavonoids (e.g., nepitrin and homoplantaginin). One of the latter group, 2″-O-acetyl-homoplantaginin, is a new natural compound. In the most active fraction, the flavonoid hispidulin was identified as major component and the assay of the pure compound confirmed a contribution of hispidulin to the CCID-inhibitory effects of S. lucida. The activity of the two major iridoids in this assay was less compared to hispidulin.

2.
Cell Mol Life Sci ; 74(10): 1907-1921, 2017 05.
Article in English | MEDLINE | ID: mdl-28013338

ABSTRACT

Retraction of mesenchymal stromal cells supports the invasion of colorectal cancer cells (CRC) into the adjacent compartment. CRC-secreted 12(S)-HETE enhances the retraction of cancer-associated fibroblasts (CAFs) and therefore, 12(S)-HETE may enforce invasivity of CRC. Understanding the mechanisms of metastatic CRC is crucial for successful intervention. Therefore, we studied pro-invasive contributions of stromal cells in physiologically relevant three-dimensional in vitro assays consisting of CRC spheroids, CAFs, extracellular matrix and endothelial cells, as well as in reductionist models. In order to elucidate how CAFs support CRC invasion, tumour spheroid-induced CAF retraction and free intracellular Ca2+ levels were measured and pharmacological- or siRNA-based inhibition of selected signalling cascades was performed. CRC spheroids caused the retraction of CAFs, generating entry gates in the adjacent surrogate stroma. The responsible trigger factor 12(S)-HETE provoked a signal, which was transduced by PLC, IP3, free intracellular Ca2+, Ca2+-calmodulin-kinase-II, RHO/ROCK and MYLK which led to the activation of myosin light chain 2, and subsequent CAF mobility. RHO activity was observed downstream as well as upstream of Ca2+ release. Thus, Ca2+ signalling served as central signal amplifier. Treatment with the FDA-approved drugs carbamazepine, cinnarizine, nifedipine and bepridil HCl, which reportedly interfere with cellular calcium availability, inhibited CAF-retraction. The elucidation of signalling pathways and identification of approved inhibitory drugs warrant development of intervention strategies targeting tumour-stroma interaction.


Subject(s)
12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/metabolism , Cancer-Associated Fibroblasts/pathology , Colon/pathology , Colorectal Neoplasms/pathology , Rectum/pathology , Signal Transduction , Calcium/metabolism , Cancer-Associated Fibroblasts/metabolism , Cardiac Myosins/metabolism , Cell Line, Tumor , Cell Movement , Colon/metabolism , Colorectal Neoplasms/metabolism , Humans , Myosin Light Chains/metabolism , Neoplasm Invasiveness/pathology , Rectum/metabolism , rho-Associated Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...