Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
PLoS One ; 16(12): e0261418, 2021.
Article in English | MEDLINE | ID: mdl-34914776

ABSTRACT

The Arctic is experiencing rapid changes in sea-ice seasonality and extent, with significant consequences for primary production. With the importance of accurate monitoring of spring phytoplankton dynamics in a changing Arctic, this study further examines the previously established critical relationship between spring phytoplankton bloom types and timing of the sea-ice retreat for broader temporal and spatial coverages, with a particular focus on the Pacific Arctic for 2003-2019. To this end, time-series of satellite-retrieved phytoplankton biomass were modeled using a parametric Gaussian function, as an effective approach to capture the development and decay of phytoplankton blooms. Our sensitivity analysis demonstrated accurate estimates of timing and presence/absence of peaks in phytoplankton biomass even with some missing values, suggesting the parametric Gaussian function is a powerful tool for capturing the development and decay of phytoplankton blooms. Based on the timing and presence/absence of a peak in phytoplankton biomass and following the classification developed by the previous exploratory work, spring bloom types are classified into three groups (under-ice blooms, probable under-ice blooms, and marginal ice zone blooms). Our results showed that the proportion of under-ice blooms was higher in the Chukchi Sea than in the Bering Sea. The probable under-ice blooms registered as the dominant bloom types in a wide area of the Pacific Arctic, whereas the marginal ice zone bloom was a relatively minor bloom type across the Pacific Arctic. Associated with a shift of sea-ice retreat timing toward earlier dates, we confirmed previous findings from the Chukchi Sea of recent shifts in phytoplankton bloom types from under-ice blooms to marginal ice zone blooms and demonstrated that this pattern holds for the broader Pacific Arctic sector for the time period 2003-2019. Overall, the present study provided additional evidence of the changing sea-ice retreat timing that can drive variations in phytoplankton bloom dynamics, which contributes to addressing the detection and consistent monitoring of the biophysical responses to the changing environments in the Pacific Arctic.


Subject(s)
Eutrophication , Ice Cover , Phytoplankton/growth & development , Arctic Regions , Biomass , Chlorophyll A/analysis , Climate , Ecosystem , Pacific Ocean , Satellite Imagery , Seasons , Temperature
2.
Bioscience ; 71(5): 467-483, 2021 May.
Article in English | MEDLINE | ID: mdl-33986631

ABSTRACT

Effective responses to rapid environmental change rely on observations to inform planning and decision-making. Reviewing literature from 124 programs across the globe and analyzing survey data for 30 Arctic community-based monitoring programs, we compare top-down, large-scale program driven approaches with bottom-up approaches initiated and steered at the community level. Connecting these two approaches and linking to Indigenous and local knowledge yields benefits including improved information products and enhanced observing program efficiency and sustainability. We identify core principles central to such improved links: matching observing program aims, scales, and ability to act on information; matching observing program and community priorities; fostering compatibility in observing methodology and data management; respect of Indigenous intellectual property rights and the implementation of free, prior, and informed consent; creating sufficient organizational support structures; and ensuring sustained community members' commitment. Interventions to overcome challenges in adhering to these principles are discussed.

3.
FEMS Microbiol Ecol ; 95(12)2019 12 01.
Article in English | MEDLINE | ID: mdl-31626297

ABSTRACT

Hypersaline aqueous environments at subzero temperatures are known to be inhabited by microorganisms, yet information on community structure in subzero brines is very limited. Near Utqiagvik, Alaska, we sampled subzero brines (-6°C, 115-140 ppt) from cryopegs, i.e. unfrozen sediments within permafrost that contain relic (late Pleistocene) seawater brine, as well as nearby sea-ice brines to examine microbial community composition and diversity using 16S rRNA gene amplicon sequencing. We also quantified the communities microscopically and assessed environmental parameters as possible determinants of community structure. The cryopeg brines harbored surprisingly dense bacterial communities (up to 108 cells mL-1) and millimolar levels of dissolved and particulate organic matter, extracellular polysaccharides and ammonia. Community composition and diversity differed between the two brine environments by alpha- and beta-diversity indices, with cryopeg brine communities appearing less diverse and dominated by one strain of the genus Marinobacter, also detected in other cold, hypersaline environments, including sea ice. The higher density and trend toward lower diversity in the cryopeg communities suggest that long-term stability and other features of a subzero brine are more important selective forces than in situ temperature or salinity, even when the latter are extreme.


Subject(s)
Bacteria/classification , Ice Cover/microbiology , Permafrost/microbiology , Seawater/microbiology , Alaska , Arctic Regions , Bacteria/genetics , Bacteria/isolation & purification , Cold Temperature , Microbiota , Phylogeny , RNA, Ribosomal, 16S/genetics , Salinity , Salts , Temperature
4.
Sci Rep ; 7(1): 8170, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28811530

ABSTRACT

Ice-albedo feedback due to the albedo contrast between water and ice is a major factor in seasonal sea ice retreat, and has received increasing attention with the Arctic Ocean shifting to a seasonal ice cover. However, quantitative evaluation of such feedbacks is still insufficient. Here we provide quantitative evidence that heat input through the open water fraction is the primary driver of seasonal and interannual variations in Arctic sea ice retreat. Analyses of satellite data (1979-2014) and a simplified ice-upper ocean coupled model reveal that divergent ice motion in the early melt season triggers large-scale feedback which subsequently amplifies summer sea ice anomalies. The magnitude of divergence controlling the feedback has doubled since 2000 due to a more mobile ice cover, which can partly explain the recent drastic ice reduction in the Arctic Ocean.

6.
Proc Natl Acad Sci U S A ; 108(9): 3653-8, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21368216

ABSTRACT

The physical properties of Arctic sea ice determine its habitability. Whether ice-dwelling organisms can change those properties has rarely been addressed. Following discovery that sea ice contains an abundance of gelatinous extracellular polymeric substances (EPS), we examined the effects of algal EPS on the microstructure and salt retention of ice grown from saline solutions containing EPS from a culture of the sea-ice diatom, Melosira arctica. We also experimented with xanthan gum and with EPS from a culture of the cold-adapted bacterium Colwellia psychrerythraea strain 34H. Quantitative microscopic analyses of the artificial ice containing Melosira EPS revealed convoluted ice-pore morphologies of high fractal dimension, mimicking features found in EPS-rich coastal sea ice, whereas EPS-free (control) ice featured much simpler pore geometries. A heat-sensitive glycoprotein fraction of Melosira EPS accounted for complex pore morphologies. Although all tested forms of EPS increased bulk ice salinity (by 11-59%) above the controls, ice containing native Melosira EPS retained the most salt. EPS effects on ice and pore microstructure improve sea ice habitability, survivability, and potential for increased primary productivity, even as they may alter the persistence and biogeochemical imprint of sea ice on the surface ocean in a warming climate.


Subject(s)
Biopolymers/chemistry , Ecosystem , Geological Phenomena , Ice Cover/chemistry , Ice Cover/microbiology , Temperature , Arctic Regions , Diatoms/chemistry , Porosity , Salinity
7.
Ambio ; 40(7): 824-7, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22338720

ABSTRACT

The SoA conference emphasized that urgent questions posed by society and decision-makers in response to rapid Arctic change require that Arctic research address the broader concepts of sustainability as well as adaptation to and mitigation of interrelated environmental and socioeconomic change. Murray et al. (submitted) explore progress made in this context. The SoA meeting demonstrated significant progress by the Arctic community of scientists and stakeholders in meeting this challenge, as well as the need to better engage the private sector and find more effective ways to partner with relevant research activities outside of the polar regions.


Subject(s)
Decision Making, Organizational , Internationality , Arctic Regions , Ice , Seawater
8.
Cryobiology ; 52(3): 417-29, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16647051

ABSTRACT

Direct evidence for metabolism in a variety of frozen environments has pushed temperature limits for bacterial activity to increasingly lower temperatures, so far to -20 degrees C. To date, the metabolic activities of marine psychrophilic bacteria, important components of sea-ice communities, have not been studied in laboratory culture, not in ice and not below -12 degrees C. We measured [3H]-leucine incorporation into macromolecules (further fractionated biochemically) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H over a range of anticipated activity-permissive temperatures, from +13 to -20 degrees C, including expected negative controls at -80 and -196 degrees C. For incubation temperatures below -1 degrees C, the cell suspensions [all in artificial seawater (ASW)] were first quick-frozen in liquid nitrogen. We also examined the effect of added extracellular polymeric substances (EPS) on [3H]-leucine incorporation. Results showed that live cells of strain 34H incorporated substantial amounts of [3H]-leucine into TCA-precipitable material (primarily protein) down to -20 degrees C. At temperatures from -1 to -20 degrees C, rates were enhanced by EPS. No activity was detected in the killed controls for strain 34H (or in Escherichia coli controls), which included TCA-killed, heat-killed, and sodium azide- and chloramphenicol-treated samples. Surprisingly, evidence for low but significant rates of intracellular incorporation of [3H]-leucine into protein was observed for both ASW-only and EPS-amended (and live only) samples incubated at -80 and -196 degrees C. Mechanisms that could explain the latter results require further study, but the process of vitrification promoted by rapid freezing and the presence of salts and organic polymers may be relevant. Overall, distinguishing between intracellular and extracellular aspects of bacterial activity appears important to understanding behavior at sub-freezing temperatures.


Subject(s)
Gammaproteobacteria/metabolism , Ice Cover , Leucine/metabolism , Bacterial Proteins/metabolism , Biopolymers , Freezing , Lipids , Nucleic Acids/metabolism
9.
Appl Environ Microbiol ; 70(1): 550-7, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14711687

ABSTRACT

Arctic wintertime sea-ice cores, characterized by a temperature gradient of -2 to -20 degrees C, were investigated to better understand constraints on bacterial abundance, activity, and diversity at subzero temperatures. With the fluorescent stains 4',6'-diamidino-2-phenylindole 2HCl (DAPI) (for DNA) and 5-cyano-2,3-ditoyl tetrazolium chloride (CTC) (for O(2)-based respiration), the abundances of total, particle-associated (>3- micro m), free-living, and actively respiring bacteria were determined for ice-core samples melted at their in situ temperatures (-2 to -20 degrees C) and at the corresponding salinities of their brine inclusions (38 to 209 ppt). Fluorescence in situ hybridization was applied to determine the proportions of Bacteria, Cytophaga-Flavobacteria-Bacteroides (CFB), and Archaea. Microtome-prepared ice sections also were examined microscopically under in situ conditions to evaluate bacterial abundance (by DAPI staining) and particle associations within the brine-inclusion network of the ice. For both melted and intact ice sections, more than 50% of cells were found to be associated with particles or surfaces (sediment grains, detritus, and ice-crystal boundaries). CTC-active bacteria (0.5 to 4% of the total) and cells detectable by rRNA probes (18 to 86% of the total) were found in all ice samples, including the coldest (-20 degrees C), where virtually all active cells were particle associated. The percentage of active bacteria associated with particles increased with decreasing temperature, as did the percentages of CFB (16 to 82% of Bacteria) and Archaea (0.0 to 3.4% of total cells). These results, combined with correlation analyses between bacterial variables and measures of particulate matter in the ice as well as the increase in CFB at lower temperatures, confirm the importance of particle or surface association to bacterial activity at subzero temperatures. Measuring activity down to -20 degrees C adds to the concept that liquid inclusions in frozen environments provide an adequate habitat for active microbial populations on Earth and possibly elsewhere.


Subject(s)
Bacteria/metabolism , Ice , Seawater/microbiology , Temperature , Archaea/metabolism , Arctic Regions , Bacteria/genetics , DNA, Bacterial/analysis , Fluorescent Dyes/metabolism , In Situ Hybridization, Fluorescence , Indoles/metabolism , Seasons , Tetrazolium Salts/metabolism
10.
Appl Environ Microbiol ; 69(7): 4282-4, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12839815

ABSTRACT

We examined the Arctic bacterium Colwellia psychrerythraea strain 34H for motility at temperatures from -1 to -15 degrees C by using transmitted-light microscopy in a temperature-controlled laboratory. The results, showing motility to -10 degrees C, indicate much lower temperatures to be permissive of motility than previously reported (5 degrees C), with implications for microbial activity in frozen environments.


Subject(s)
Cold Temperature , Freezing , Gammaproteobacteria/physiology , Arctic Regions , Image Processing, Computer-Assisted , Movement
11.
Astrobiology ; 3(4): 785-811, 2003.
Article in English | MEDLINE | ID: mdl-14987483

ABSTRACT

The putative ocean of Europa has focused considerable attention on the potential habitats for life on Europa. By generally clement Earth standards, these Europan habitats are likely to be extreme environments. The objectives of this paper were to examine: (1) the limits for biological activity on Earth with respect to temperature, salinity, acidity, desiccation, radiation, pressure, and time; (2) potential habitats for life on Europa; and (3) Earth analogues and their limitations for Europa. Based on empirical evidence, the limits for biological activity on Earth are: (1) the temperature range is from 253 to 394 K; (2) the salinity range is a(H2O) = 0.6-1.0; (3) the desiccation range is from 60% to 100% relative humidity; (4) the acidity range is from pH 0 to 13; (5) microbes such as Deinococcus are roughly 4,000 times more resistant to ionizing radiation than humans; (6) the range for hydrostatic pressure is from 0 to 1,100 bars; and (7) the maximum time for organisms to survive in the dormant state may be as long as 250 million years. The potential habitats for life on Europa are the ice layer, the brine ocean, and the seafloor environment. The dual stresses of lethal radiation and low temperatures on or near the icy surface of Europa preclude the possibility of biological activity anywhere near the surface. Only at the base of the ice layer could one expect to find the suitable temperatures and liquid water that are necessary for life. An ice layer turnover time of 10 million years is probably rapid enough for preserving in the surface ice layers dormant life forms originating from the ocean. Model simulations demonstrate that hypothetical oceans could exist on Europa that are too cold for biological activity (T < 253 K). These simulations also demonstrate that salinities are high, which would restrict life to extreme halophiles. An acidic ocean (if present) could also potentially limit life. Pressure, per se, is unlikely to directly limit life on Europa. But indirectly, pressure plays an important role in controlling the chemical environments for life. Deep ocean basins such as the Mariana Trench are good analogues for the cold, high-pressure ocean of Europa. Many of the best terrestrial analogues for potential Europan habitats are in the Arctic and Antarctica. The six factors likely to be most important in defining the environments for life on Europa and the focus for future work are liquid water, energy, nutrients, low temperatures, salinity, and high pressures.


Subject(s)
Earth, Planet , Exobiology , Jupiter , Cold Temperature , Deinococcus/metabolism , Hot Temperature , Hydrogen-Ion Concentration , Ice , Life , Models, Chemical , Oceans and Seas , Origin of Life , Pressure , Radiation, Ionizing , Sodium Chloride/pharmacology , Temperature , Time Factors , Ultraviolet Rays , Water
SELECTION OF CITATIONS
SEARCH DETAIL