Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 2385, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493170

ABSTRACT

Forest soils harbor hyper-diverse microbial communities which fundamentally regulate carbon and nutrient cycling across the globe. Directly testing hypotheses on how microbiome diversity is linked to forest carbon storage has been difficult, due to a lack of paired data on microbiome diversity and in situ observations of forest carbon accumulation and storage. Here, we investigated the relationship between soil microbiomes and forest carbon across 238 forest inventory plots spanning 15 European countries. We show that the composition and diversity of fungal, but not bacterial, species is tightly coupled to both forest biotic conditions and a seven-fold variation in tree growth rates and biomass carbon stocks when controlling for the effects of dominant tree type, climate, and other environmental factors. This linkage is particularly strong for symbiotic endophytic and ectomycorrhizal fungi known to directly facilitate tree growth. Since tree growth rates in this system are closely and positively correlated with belowground soil carbon stocks, we conclude that fungal composition is a strong predictor of overall forest carbon storage across the European continent.


Subject(s)
Mycobiome , Carbon , Soil Microbiology , Forests , Trees/microbiology , Soil
2.
ISME J ; 16(5): 1327-1336, 2022 05.
Article in English | MEDLINE | ID: mdl-35001085

ABSTRACT

Most trees form symbioses with ectomycorrhizal fungi (EMF) which influence access to growth-limiting soil resources. Mesocosm experiments repeatedly show that EMF species differentially affect plant development, yet whether these effects ripple up to influence the growth of entire forests remains unknown. Here we tested the effects of EMF composition and functional genes relative to variation in well-known drivers of tree growth by combining paired molecular EMF surveys with high-resolution forest inventory data across 15 European countries. We show that EMF composition was linked to a three-fold difference in tree growth rate even when controlling for the primary abiotic drivers of tree growth. Fast tree growth was associated with EMF communities harboring high inorganic but low organic nitrogen acquisition gene proportions and EMF which form contact versus medium-distance fringe exploration types. These findings suggest that EMF composition is a strong bio-indicator of underlying drivers of tree growth and/or that variation of forest EMF communities causes differences in tree growth. While it may be too early to assign causality or directionality, our study is one of the first to link fine-scale variation within a key component of the forest microbiome to ecosystem functioning at a continental scale.


Subject(s)
Mycorrhizae , Ecosystem , Forests , Mycorrhizae/genetics , Plant Roots/microbiology , Trees/microbiology
3.
Environ Monit Assess ; 186(1): 257-75, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23955498

ABSTRACT

The consistency of visual assessment of tree defoliation, which represents the most widely used indicator for tree condition, has frequently been in the focus of scientific criticism. Thus, the objective of the present study was to examine the consistency of the defoliation data from the annual national training courses for the forest condition survey in Germany from 1992 to 2012. Defoliation assessments were carried out in stands of beech (Fagus sylvatica), oak (Quercus robur and Quercus petraea), Norway spruce (Picea abies), and pine (Pinus sylvestris). Among the observer teams, the absolute deviation from the observer mean of all years was ±4.4 % defoliation and the standard deviation of defoliation was ±5.5 %. On average, 94 % of the assessments were located within the ±10 % interval of deviation from the mean. Tree species-specific differences did not occur when all years were considered. A trend towards increasing consistency was observed from 1992 to 2012, in particular for oak and spruce. The deviation of defoliation assessments depended non-linearly on the level of defoliation with highest deviations at intermediate defoliations. In spite of high correlations and agreements among observers, systematic errors were determined in nearly every year. However, within-observer variances were higher than between-observer variances. The present study applied a three-way evaluation approach for the assessment of consistency and demonstrated that the visual defoliation assessment at the national training courses in general produced consistent data within Germany from 1992 to 2012.


Subject(s)
Environmental Monitoring/methods , Forestry/education , Trees/physiology , Data Collection , Education , Forestry/methods , Germany , Plant Leaves
SELECTION OF CITATIONS
SEARCH DETAIL
...