Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 5612, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453983

ABSTRACT

The impact of particle size distribution of coffee grounds on espresso extraction was explored. Finely ground coffee for espresso has a characteristically bimodal particle size distribution. For a given median grind size, different grinding technologies can yield a different share of fines (particles < 100 µm). We performed espresso extractions for a range of median particle sizes and systematically varying the share of fines by adding sieved fines to the coffee grounds. Dynamic beverage weights, extraction percentage, extraction time and dynamic headspace PTR-MS (proton-transfer mass spectrometer) analysis and sensory evaluation of the resulting brews were measured. We show that the share of fines plays a key role in the espresso extraction flow rate. An increase of share of fines decreases coffee bed permeability, leads to reduced flow rates and longer extraction times. A statistical model using partial least squares regression of the particle size distributions of coffee grounds confirms that fines decrease the coffee bed permeability. The PTR-MS analysis shows a non-linear increase of aroma compounds in the cup with increasing extraction yield. Our hypothesis is that both extraction efficiency and post-extraction evaporative losses of aroma compounds influence the final aroma compound concentrations in the cup.

2.
Sci Rep ; 10(1): 17079, 2020 10 13.
Article in English | MEDLINE | ID: mdl-33051489

ABSTRACT

The objective of this paper is to elucidate the variables that govern coffee extraction from single serve coffee capsules. The study was conducted on 43 Nespresso and Nespresso-compatible capsules of the same geometry, from all of which the coffee was extracted on the same machine. This allowed the link between a range of coffee and capsule (input) parameters with coffee brew (output) variables to be studied. It was demonstrated that the most efficient way to increase total dissolved solids in the brew is to use more coffee for extraction, and/or to grind the coffee more finely. However, grinding too finely can lead to excessive flow restriction. The most significant new insight from this study is the importance of the proportion of fines (particles smaller than 100 µm) regarding the capsule extraction dynamics. Capsules with a higher share of fines, for similar median particle size of the ground coffee, led to longer extraction times. General rules applicable for capsule coffee product development were established, although fine-tuning of parameters for successful capsule coffee extraction remains specific to production line and type of coffee.

SELECTION OF CITATIONS
SEARCH DETAIL
...