Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrasonics ; 53(8): 1433-40, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23545114

ABSTRACT

Accelerated fatigue tests with Ti6Al4V were carried out using a 20kHz ultrasonic testing facility to investigate the cyclic deformation behavior in the Very High Cycle Fatigue (VHCF) regime in detail. Beside parameters like the ultrasonic generator power and the displacement of the specimen, a 3D laser scanning vibrometer was used to characterize the oscillation and fatigue behavior of the Ti-alloy. The course of the S-N(f) curve at the stress ratio R=-1 shows a significant decrease of the bearable stress amplitude and a change from surface to subsurface failures in the VHCF regime for more than 107 cycles. Microscopic investigations of the distribution of the α- and ß-phase of Ti6Al4V indicate that inhomogeneities in the phase distribution are reasons for the internal crack initiation. High resolution vibrometry was used to visualize the eigenmode of the designed VHCF-specimen at 20 kHz in the initial state and to indicate local changes in the eigenmodes as a result of progressing fatigue damage. Non-contact strain measurements were realized and used to determine the stress amplitude. The determined stress amplitudes were correlated with strain gauge measurements and finite element analysis.

2.
Biomaterials ; 27(8): 1200-8, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16140373

ABSTRACT

In this investigation, the cyclic deformation behaviour of the binary titanium alloys Ti-6Al-4V and Ti-6Al-7Nb was characterized in axial stress-controlled constant amplitude and load increase tests as well as in rotating bending tests. The influence of different clinically relevant surface treatments (polishing, corundum grit blasting, thermal and anodic oxidizing) on the fatigue behaviour was investigated. All tests were realized in oxygen-saturated Ringer's solution. The cyclic deformation behaviour was characterized by mechanical hysteresis measurements. In addition, the change of the free corrosion potential and the corrosion current during testing in simulated physiological media indicated surface damages such as slip bands, intrusions and extrusions or finally microcracks. Microstructural changes on the specimen surfaces were examined by scanning electron microscopy (SEM).


Subject(s)
Biocompatible Materials , Culture Media , Titanium , Alloys , Corrosion , Materials Testing , Microscopy, Electron, Scanning , Oxidation-Reduction , Spectroscopy, Fourier Transform Infrared , Surface Properties , Titanium/chemistry
3.
J Biomech ; 36(2): 179-89, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12547355

ABSTRACT

Despite its clinical importance, the fatigue behaviour of cortical bone has not been examined as widely as its static behaviour. In the present study, specimens from the tibiae of horses have been subjected to load-controlled single step tests. The cyclic deformation behaviour was described by the development of stress-strain hysteresis parameters over the lifetime. The fatigue behaviour of bone is characterised by cyclic softening which is most distinctive towards the end of the lifetime. The microstructural damage accumulated during cyclic loading results in a loss of stiffness, asymmetrical deformation of the bone in tension and compression in cyclic creep. As shown by light and scanning electron microscopy, microcrack formation and growth is the main damage mechanism. The crack growth behaviour is strongly influenced by the microstructure, the stress components and the absolute value of the local stresses. Lower local stresses and/or compressive mean stresses lead to a dominant influence of the shear stress components with shear failure at inner interfaces. With increasing crack length, that is, higher local stress amplitudes, or tensile mean stresses, the microstructure is more and more ignored and failure occurs primarily under the influence of the normal stress components. This can be clearly seen on the fracture and specimen surfaces.


Subject(s)
Fractures, Stress/pathology , Fractures, Stress/physiopathology , Tibial Fractures/pathology , Tibial Fractures/physiopathology , Weight-Bearing , Animals , Elasticity , Horses , In Vitro Techniques , Pressure , Sensitivity and Specificity , Stress, Mechanical , Tibia/injuries , Tibia/pathology , Tibia/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...