Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
JMIR Rehabil Assist Technol ; 9(2): e33521, 2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35653180

ABSTRACT

BACKGROUND: Measuring and modifying movement-related joint loading is integral to the management of lower extremity osteoarthritis (OA). Although traditional approaches rely on measurements made within the laboratory or clinical environments, inertial sensors provide an opportunity to quantify these outcomes in patients' natural environments, providing greater ecological validity and opportunities to develop large data sets of movement data for the development of OA interventions. OBJECTIVE: This narrative review aimed to discuss and summarize recent developments in the use of inertial sensors for assessing movement during daily activities in individuals with hip and knee OA and to identify how this may translate to improved remote health care for this population. METHODS: A literature search was performed in November 2018 and repeated in July 2019 and March 2021 using the PubMed and Embase databases for publications on inertial sensors in hip and knee OA published in English within the previous 5 years. The search terms encompassed both OA and wearable sensors. Duplicate studies, systematic reviews, conference abstracts, and study protocols were also excluded. One reviewer screened the search result titles by removing irrelevant studies, and 2 reviewers screened study abstracts to identify studies using inertial sensors as the main sensing technology and a primary outcome related to movement quality. In addition, after the March 2021 search, 2 reviewers rescreened all previously included studies to confirm their relevance to this review. RESULTS: From the search process, 43 studies were determined to be relevant and subsequently included in this review. Inertial sensors have been successfully implemented for assessing the presence and severity of OA (n=11), assessing disease progression risk and providing feedback for gait retraining (n=7), and remotely monitoring intervention outcomes and identifying potential responders and nonresponders to interventions (n=14). In addition, studies have validated the use of inertial sensors for these applications (n=8) and analyzed the optimal sensor placement combinations and data input analysis for measuring different metrics of interest (n=3). These studies show promise for remote health care monitoring and intervention delivery in hip and knee OA, but many studies have focused on walking rather than a range of activities of daily living and have been performed in small samples (<100 participants) and in a laboratory rather than in a real-world environment. CONCLUSIONS: Inertial sensors show promise for remote monitoring, risk assessment, and intervention delivery in individuals with hip and knee OA. Future opportunities remain to validate these sensors in real-world settings across a range of activities of daily living and to optimize sensor placement and data analysis approaches.

2.
Clin Biomech (Bristol, Avon) ; 80: 105232, 2020 12.
Article in English | MEDLINE | ID: mdl-33202314

ABSTRACT

BACKGROUND: Varus thrust during walking, visualized as excessive frontal plane knee motion during weight acceptance, is a modifiable risk factor for progression of knee osteoarthritis. However, visual assessment does not capture thrust severity and quantification with optical motion capture is often not feasible. Inertial sensors may provide a convenient alternative to optical motion capture. This proof-of-concept study sought to compare wearable inertial sensors to optical motion capture for the quantification of varus thrust. METHODS: Twenty-six participants with medial knee osteoarthritis underwent gait analysis at self-selected and fast speeds. Linear regression with generalized estimating equations assessed associations between peak knee adduction velocity or knee adduction excursion from optical motion capture and peak thigh or shank adduction velocity from two inertial sensors on the lower limb. Relationships between inertial measures and peak external knee adduction moment were assessed as a secondary aim. FINDINGS: Both thigh and shank inertial sensor measures were associated with the optical motion capture measures for both speeds (P < 0.001 to P = 0.020), with the thigh measures having less variability than the shank. After accounting for age, sex, body mass index, radiographic severity, and limb alignment, thigh adduction velocity was also associated with knee adduction moment at both speeds (both P < 0.001). INTERPRETATION: An inertial sensor placed on the mid-thigh can quantify varus thrust in people with medial knee osteoarthritis without the need for optical motion capture. This single sensor may be useful for risk screening or evaluating the effects of interventions in large samples.


Subject(s)
Monitoring, Physiologic/instrumentation , Osteoarthritis, Knee/physiopathology , Wearable Electronic Devices , Biomechanical Phenomena , Body Mass Index , Female , Gait , Humans , Linear Models , Male , Middle Aged
3.
J Prosthet Orthot ; Online first2020 Aug 11.
Article in English | MEDLINE | ID: mdl-33510564

ABSTRACT

INTRODUCTION: Lower-limb prosthesis users (LLPUs) experience increased fall risk due to gait and balance impairments. Clinical outcome measures are useful for measuring balance impairment and fall risk screening but suffer from limited resolution and ceiling effects. Recent advances in wearable sensors that can measure different components of gait stability may address these limitations. This study assessed feasibility and construct validity of a wearable sensor system (APDM Mobility Lab) to measure postural control and gait stability. MATERIALS AND METHODS: Lower-limb prosthesis users (n=22) and able-bodied controls (n=24) completed an Instrumented Stand-and-Walk Test (ISAW) while wearing the wearable sensors. Known-groups analysis (prosthesis versus controls) and convergence analysis (Prosthetic Limb Users Survey of Mobility [PLUS-M] and Activity-specific Balance Confidence [ABC] Scale) were performed on 20 stability-related measures. RESULTS: The system was applied without complications; however missing anticipatory postural adjustment data points for nine subjects affected the analysis. Of the 20 analyzed measures output by the sensors, only three significantly differed (p≤.05) between cohorts, and two demonstrated statistically significant correlations with the self-report measures. CONCLUSIONS: The results of this study suggest the clinical feasibility but only partial construct validity of the wearable sensor system in conjunction with the ISAW test to measure LLPU stability and balance. The sample consisted of high-functioning LLPUs, so further research should evaluate a more representative sample with additional outcome measures and tasks.

SELECTION OF CITATIONS
SEARCH DETAIL
...