Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Neurophysiol ; 127(9): 3198-3204, 2016 09.
Article in English | MEDLINE | ID: mdl-27298232

ABSTRACT

OBJECTIVE: To study motor unit activity in the medio-lateral extension of the masseter using an adapted scanning EMG technique that allows studying the territories of multiple motor units (MUs) in one scan. METHODS: We studied the m. masseter of 10 healthy volunteers in whom two scans were performed. A monopolar scanning needle and two pairs of fine-wire electrodes were inserted into the belly of the muscle. The signals of the fine wire electrodes were decomposed into the contribution of single MUs and used as a trigger for the scanning needle. In this manner multiple MU territory scans were obtained simultaneously. RESULTS: We determined 161 MU territories. The maximum number of territories obtained in one scan was 15. The median territory size was 4.0mm. Larger and smaller MU territories were found throughout the muscle. CONCLUSIONS: The presented technique showed its feasibility in obtaining multiple MU territories in one scan. MUs were active throughout the depth of the muscle. SIGNIFICANCE: The distribution of electrical and anatomical size of MUs substantiates the heterogeneous distribution of MUs throughout the muscle volume. This distributed activity may be of functional significance for the stabilization of the muscle during force generation.


Subject(s)
Electromyography/methods , Masseter Muscle/physiology , Muscle Contraction/physiology , Recruitment, Neurophysiological/physiology , Adult , Female , Humans , Male
2.
J Oral Rehabil ; 41(7): 477-85, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24712837

ABSTRACT

Localised motor-unit (MU) recruitment in the masseter was analysed in this study. We investigated whether differential activation behaviour, which has already been reported for distant masseter regions, can also be detected in small muscle subvolumes at the level of single MUs. Two bipolar fine-wire electrodes and an intra-oral 3D bite-force transmitter were used to record intra-muscular electromyograms (EMG) resulting from controlled bite-forces of 10 healthy human subjects (mean age 24.1 ± 1.2 years). Two-hundred and seventeen decomposed MUs were organised into localised MU task groups with different (P < 0.001) force-direction-specific behaviour. Proportions of MUs involved in one, two, three or four examined tasks were 46%, 31%, 18% and 5%, respectively. This study provides evidence of the ability of the neuromuscular system to modify the mechanical output of small masseter subvolumes by differential control of adjacent MUs belonging to distinct task groups. Localised differential activation behaviour of the masseter may be the crucial factor enabling highly flexible and efficient adjustment of the muscle activity in response to complex local biomechanical needs, for example, continually varying bite-forces during the demanding masticatory process.


Subject(s)
Masseter Muscle/physiology , Muscle Contraction/physiology , Recruitment, Neurophysiological/physiology , Adult , Bite Force , Electrodes , Electromyography/methods , Female , Humans , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...