Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Physiol Biochem Zool ; 96(5): 378-389, 2023.
Article in English | MEDLINE | ID: mdl-37713714

ABSTRACT

AbstractMigrating birds perform extreme endurance exercise when flying. This shifts the balance between the production of reactive oxygen species and the antioxidant defense system toward the former, potentially generating oxidative damages. In between migratory flights, birds make stopovers, where besides accumulating fuel (mainly fats), they are assumed to rest and recover from the strenuous flight. We performed a series of studies on both temporarily caged (northern wheatears) and free-flying (northern wheatears and European robins) migrants to investigate whether migrants recover during stopover by decreasing the amount of oxidative lipid damage (malondialdehyde [MDA]) and/or increasing the total nonenzymatic antioxidant capacity (AOX). In caged wheatears, MDA decreased within a single day. These birds were able to simultaneously accumulate considerable amounts of fuel. Also, in the free-flying wheatears, there was a decrease in MDA during stopover; however, this process seemed incompatible with refueling. The reason for this difference could relate to constraints in the wild that are absent in caged birds, such as food limitation/composition and locomotor activity. In the robins, there was a near significant decrease in MDA concentration in relation to how long the birds were already at stopover, suggesting that this species also physiologically recovers during stopover. AOX did not change during stopover in either of the wheatear studies. For the robins, however, uric acid-corrected AOX declined during stopover. Our results show that during stopover, migrating birds rapidly reduce oxidative lipid damage, thereby likely recovering their physiological state. In addition to the commonly accepted function of refueling, stopovers thus probably serve physiological recovery.


Subject(s)
Antioxidants , Songbirds , Animals , Songbirds/physiology , Food , Lipids , Animal Migration/physiology , Seasons
2.
Mov Ecol ; 11(1): 7, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36747277

ABSTRACT

BACKGROUND: Birds have extremely elevated metabolic rates during migratory endurance flight and consequently can become physiologically exhausted. One feature of exhaustion is oxidative damage, which occurs when the antioxidant defense system is overwhelmed by the production of damaging reactive oxygen species (ROS). Migrating birds have been shown to decrease the amount of oxidative lipid damage during stopovers, relatively stationary periods in between migratory flights. It has therefore been argued that, in addition to accumulating fuel, one of the functions of stopover is to restore the oxidative balance. If this is so, we would expect that migrating birds are unlikely to resume migration from stopover when they still have high amounts of lipid damage. METHODS: To test this hypothesis, we measured parameters of the oxidative balance and related these to stopover departure decisions of song thrushes (Turdus philomelos) and northern wheatears (Oenanthe oenanthe), a medium- and long-distance songbird migrant, respectively. We measured malondialdehyde (MDA) concentration, a biomarker for oxidative lipid damage, and total non-enzymatic antioxidant capacity (AOX), an overall biomarker of protection against ROS. Stopover departure decisions were determined using a fully automated telemetry system set-up on our small island study site. RESULTS: The decision to resume migration was not related with MDA concentration in either study species, also not when this was corrected for circulating fatty acid concentrations. Similarly, AOX did not affect this decision, also not when corrected for uric-acid concentration. The time within the night when birds departed also was not affected by MDA concentration or AOX. However, confirming earlier observations, we found that in both species, fat individuals were more likely to depart than lean individuals, and fat northern wheatears departed earlier within the night than lean conspecifics. Northern wheatears additionally departed earlier in spring with more southerly winds. CONCLUSIONS: We found no support for the idea that stopovers departure decisions are influenced by parameters of the oxidative balance. We discuss possible reasons for this unexpected finding.

3.
Biol Lett ; 19(2): 20220518, 2023 02.
Article in English | MEDLINE | ID: mdl-36789532

ABSTRACT

Strenuous physical activity can negatively affect constitutive innate immune function (CIF), the always present first line of defence against pathogens. CIF is non-specific, and thus vital when encountering novel pathogens. A lowered CIF likely increases the risk of infection and disease. Migratory birds engage in truly extreme physical activity during their endurance flights, however, little is known about how they deal with the negative impact this has on their immune function. By collecting both between- and within-individual data we show, for the first time, that free-flying migratory birds can recover several parameters of CIF during stopovers, which are stationary periods in between migratory flights. With this, we provide an important piece of the puzzle on how migrating birds cope with the physiological challenges they face on their biannual journeys. Furthermore, our study stresses the importance of migratory stopovers beyond fuel accumulation.


Subject(s)
Animal Migration , Flight, Animal , Animals , Flight, Animal/physiology , Animal Migration/physiology , Birds/physiology , Nutritional Status , Immunity
4.
Physiol Behav ; 249: 113768, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35247445

ABSTRACT

During migratory endurance flights, which are energetically very demanding, migrants have to deal with prolonged elevated generation of reactive oxygen species (ROS). To limit the damaging actions that ROS have on lipids and proteins, migrating birds are known to upregulate their antioxidant defence system. However, there may be additional ways to limit oxidative damage incurred from flying. Migratory endurance flights are fuelled mainly with fatty acids (FAs), and the risk of their peroxidation (resulting in oxidative lipid damage) increases with the number of double bonds in a FA, with polyunsaturated FAs (2 or more double bonds, PUFAs) being most peroxidation-prone. By fuelling their flights with relatively few PUFAs, migratory birds could thus limit oxidative lipid damage. Within migratory birds, there is considerable variation in the length of their flights, with nocturnal migrants making lengthier flight bouts, thus more likely to experience lengthier periods of elevated ROS production, than diurnal migrants. However, whether migrants making lengthier flights incur more oxidative lipid damage is unknown. Neither is it known whether flight length and FA composition are associated. Therefore, we determined plasmatic malondialdehyde level, a marker of oxidative lipid damage, and FA composition of three nocturnal and two diurnal migrant species caught at an autumn stopover site. We found little inter-specific variation in malondialdehyde level, indicating that the amount of oxidative lipid damage was comparable across the species. In contrast, the species strongly differed in their plasmatic FA composition. The nocturnal migrants had significantly lower relative PUFA levels than both diurnal migrants, an effect mainly attributable to linoleic acid, an essential (strictly dietary) FA. Consequently, the susceptibility of plasmatic FAs to lipid peroxidation was significantly lower in the nocturnal than diurnal migrants. Because in birds, energy expenditure during flight decreases with the degree of FA unsaturation, we interpret our observation of lower PUFA levels in nocturnal migrants as support for the idea that utilizing PUFA-poor fuel can help migrating birds to curb oxidative lipid damage.


Subject(s)
Animal Migration , Flight, Animal , Animal Migration/physiology , Animals , Birds/physiology , Fatty Acids , Flight, Animal/physiology , Malondialdehyde , Oxidative Stress/physiology , Reactive Oxygen Species
5.
Biol Rev Camb Philos Soc ; 97(4): 1231-1252, 2022 08.
Article in English | MEDLINE | ID: mdl-35137518

ABSTRACT

Global movement patterns of migratory birds illustrate their fascinating physical and physiological abilities to cross continents and oceans. During their voyages, most birds land multiple times to make so-called 'stopovers'. Our current knowledge on the functions of stopover is mainly based on the proximate study of departure decisions. However, such studies are insufficient to gauge fully the ecological and evolutionary functions of stopover. If we study how a focal trait, e.g. changes in energy stores, affects the decision to depart from a stopover without considering the trait(s) that actually caused the bird to land, e.g. unfavourable environmental conditions for flight, we misinterpret the function of the stopover. It is thus important to realise and acknowledge that stopovers have many different functions, and that not every migrant has the same (set of) reasons to stop-over. Additionally, we may obtain contradictory results because the significance of different traits to a migrant is context dependent. For instance, late spring migrants may be more prone to risk-taking and depart from a stopover with lower energy stores than early spring migrants. Thus, we neglect that departure decisions are subject to selection to minimise immediate (mortality risk) and/or delayed (low future reproductive output) fitness costs. To alleviate these issues, we first define stopover as an interruption of migratory endurance flight to minimise immediate and/or delayed fitness costs. Second, we review all probable functions of stopover, which include accumulating energy, various forms of physiological recovery and avoiding adverse environmental conditions for flight, and list potential other functions that are less well studied, such as minimising predation, recovery from physical exhaustion and spatiotemporal adjustments to migration. Third, derived from these aspects, we argue for a paradigm shift in stopover ecology research. This includes focusing on why an individual interrupts its migratory flight, which is more likely to identify the individual-specific function(s) of the stopover correctly than departure-decision studies. Moreover, we highlight that the selective forces acting on stopover decisions are context dependent and are expected to differ between, e.g. K-/r-selected species, the sexes and migration strategies. For example, all else being equal, r-selected species (low survival rate, high reproductive rate) should have a stronger urge to continue the migratory endurance flight or resume migration from a stopover because the potential increase in immediate fitness costs suffered from a flight is offset by the expected higher reproductive success in the subsequent breeding season. Finally, we propose to focus less on proximate mechanisms controlling landing and departure decisions, and more on ultimate mechanisms to identify the selective forces shaping stopover decisions. Our ideas are not limited to birds but can be applied to any migratory species. Our revised definition of stopover and the proposed paradigm shift has the potential to stimulate a fruitful discussion towards a better evolutionary ecological understanding of the functions of stopover. Furthermore, identifying the functions of stopover will support targeted measures to conserve and restore the functionality of stopover sites threatened by anthropogenic environmental changes. This is especially important for long-distance migrants, which currently are in alarming decline.


Subject(s)
Animal Migration , Plant Breeding , Animal Migration/physiology , Animals , Biological Evolution , Birds/physiology , Seasons
6.
Curr Zool ; 67(3): 349, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34616930

ABSTRACT

[This corrects the article DOI: 10.1093/cz/zoz009.][This corrects the article DOI: 10.1093/cz/zoz009.].

7.
Ecol Evol ; 10(18): 10196-10206, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33005375

ABSTRACT

Birds have been observed to have dietary preferences for unsaturated fatty acids during migration. Polyunsaturated fatty acids (PUFAs) may increase the exercise performance of migrant birds; however, PUFAs are also peroxidation prone and might therefore incur increased costs in terms of enhanced oxidative damage in migratory individuals. To shed light on this potential constraint, we analyzed plasma fatty acid (FA) composition and estimated the unsaturation index as a proxy for susceptibility to lipid peroxidation of migrants and residents of the partially migratory common blackbird (Turdus merula) at a stopover site during autumn migration. As predicted, migrant birds had higher relative and absolute levels of PUFAs compared to resident birds. This included the strictly dietary ω-3 PUFA α-linolenic acid, suggesting a dietary and/or storage preference for these FAs in migrants. Interestingly, the FA unsaturation index did not differ between migrants and residents. These findings suggest a mechanism where birds alter their levels of metabolic substrate without simultaneously increasing the susceptibility of the substrate to lipid peroxidation. In summary, our results are in line with the hypothesis that increased exercise performance during migration might be constrained by oxidative stress, which is manifested in changes in the composition of key FAs to retain the unsaturation index constant despite the increased levels of peroxidizable PUFAs.

8.
Curr Zool ; 66(1): 21-28, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32467701

ABSTRACT

In many animals, catabolic and anabolic periods are temporally separated. Migratory birds alternate energy expenditure during flight with energy accumulation during stopover. The size of the energy stores at stopover affects the decision to resume migration and thus the temporal organization of migration. We now provide data suggesting that it is not only the size of the energy stores per se that may influence migration scheduling, but also the physiological consequences of flying. In two subspecies of the northern wheatear Oenanthe oenanthe, a long-distance migrant, estimated energy stores at a stopover during autumn migration were positively related with both constitutive innate and acquired immune function, and negatively related with oxidative damage to lipids. In other words, migrants' physiological condition was associated with their energetic condition. Although time spent at stopover before sampling may have contributed to this relationship, our results suggest that migrants have to trade-off the depletion of energy stores during flight with incurring physiological costs. This will affect migrants' decisions when to start and when to terminate a migratory flight. The physiological costs associated with the depletion of energy stores may also help explaining why migrants often arrive at and depart from stopover sites with larger energy stores than expected. We propose that studies on the role of energy stores as drivers of the temporal organization of (avian) migration need to consider physiological condition, such as immunological and oxidative states.

9.
R Soc Open Sci ; 7(2): 192031, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32257353

ABSTRACT

Migratory flight is physiologically highly demanding and has been shown to negatively affect multiple parameters of constitutive immune function (CIF), an animal's first line of physiological defence against infections. In between migratory flights, most birds make stopovers, periods during which they accumulate fuel for the next flight(s). Stopovers are also commonly thought of as periods of rest and recovery, but what this encompasses is largely undefined. Here, we show that during stopover, northern wheatears Oenanthe oenanthe, a long-distance migratory bird, can rapidly increase constitutive innate immune function. We caught and temporarily caged birds under ad libitum food conditions at a stopover site in autumn. Within 2 days, most birds significantly increased complement activity and their ability to kill microbes. Changes in immune function were not related to the birds' food intake or extent of fuel accumulation. Our study suggests that stopovers may not only be important to refuel but also to restore immune function. Additionally, the increase in CIF could help migrating birds to deal with novel pathogens they may encounter at stopover sites.

10.
Horm Behav ; 122: 104746, 2020 06.
Article in English | MEDLINE | ID: mdl-32217064

ABSTRACT

Animals usually show distinct periods of diel activity and non-activity. Circulating baseline levels of glucocorticoid hormones (corticosterone and cortisol) often peak just before or at the transition from the non-active to the active period of the day. This upregulation of glucocorticoids may function to mobilize stored energy and prepare an animal for increased activity. Usually, the alternation of active and non-active periods is highly predictable; however, there is one group of animals for which this is not always the case. Many otherwise diurnal birds show nocturnal activity during the migration seasons. Nocturnal migratory flights are alternated with stopover periods during which the birds refuel and rest. Stopovers vary in length, meaning that nocturnal migrants are inactive in some nights (when they continue their stopover) but extremely active in other nights (when they depart and fly throughout the night). This provides an ideal natural situation for testing whether glucocorticoids are upregulated in preparation for an increase in activity, which we used in this study. We found that in northern wheatears (Oenanthe oenanthe), corticosterone levels peaked in the few hours before sunset in birds departing from stopover that night, and, importantly, that this peak was absent in birds continuing stopover. This indicates that corticosterone is upregulated in the face of an increase in energy demands, underlining corticosterone's preparative metabolic function (energy mobilization). The timing of upregulation of corticosterone also gives a first insight in when during the day nocturnally migrating birds decide whether or not to resume migration.


Subject(s)
Animal Migration/physiology , Circadian Rhythm/physiology , Corticosterone/blood , Songbirds/physiology , Animals , Corticosterone/metabolism , Decision Making , Passeriformes/physiology , Photoperiod , Rest/physiology , Seasons , Songbirds/blood , Spatial Navigation/physiology , Time Factors
11.
Mov Ecol ; 8: 6, 2020.
Article in English | MEDLINE | ID: mdl-32047634

ABSTRACT

BACKGROUND: Songbirds following distinct migration strategies (e.g. long- vs. short- to medium-distance migrants) often differ in their speed of migration during autumn and, thus, are assumed to face different time constraints. During migration, most songbird species alternate migratory flights with stopover periods. Many of them restrict these migratory flights to the night, i.e., they are nocturnal migrants. At stopover, nocturnal migrants need to select a specific night (night-to-night decision) and time of night (within-night decision) to resume migration. These departure decisions, which largely determine the speed of migration, are jointly affected by a set of intrinsic and extrinsic factors, i.e., departure cues. Here we aim to assess whether the set of intrinsic and extrinsic factors and the magnitude of their respective effects on stopover departure decisions differs between nocturnally migrating songbird species, depending on their migration strategy and associated time constraints. METHODS: We radio-tracked migrating Northern Wheatears (Oenanthe oenanthe; long-distance migrant), European robins (Erithacus rubecula) and Common Blackbirds (Turdus merula; both medium-distance migrants) during autumn stopover and analysed their night-to-night and within-night departure timing in relation to intrinsic and extrinsic factors. RESULTS: Species generally differed in their departure timing on both temporal scales, with shortest stopovers and earliest nocturnal departures in the long-distance migrant. Some factors, such as day of year, fuel load, cloud cover and crosswind, had consistent effects on stopover departure decisions in all three species. However, species differed in the effects of tailwind assistance, change in atmospheric pressure and air temperature on their stopover departure decisions. Whereas night-to-night decisions were affected by these extrinsic factors in either both or one of the medium-distance migrants, such effects were not found in the long-distance migrant. CONCLUSIONS: Our results suggest that the general timing of departures in songbirds is affected by the species-specific migration strategy and associated time constraints. Further, they imply that the assessment and usage of specific extrinsic factors, i.e., weather conditions, as departure cues is adjusted based on this migration strategy, with the long-distance migrants being least selective at departure. Other intrinsic and extrinsic factors, however, seem to be used as departure cues independent of migration strategy.

12.
Gen Comp Endocrinol ; 275: 25-29, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30753841

ABSTRACT

Wild animals typically suffer from stress when brought into captivity. This stress is characterized by elevated circulating glucocorticoid levels and weight loss. We here describe for the first time a case where a wild animal, the long-distance migrating northern wheatear, does not show signs of stress when caged. We captured these birds on a stopover site during their spring migration and caged them individually with ad libitum access to food and water. The birds were divided into four groups and were blood-sampled immediately in the field, a few hours after caging, one day after caging, or three days after caging, respectively. From these blood-samples we determined circulating corticosterone level. Food intake and body mass were also monitored. We found that, with very few exceptions, corticosterone levels were low and did not differ among the groups. Accordingly, almost all birds consumed huge quantities of food and substantially increased their body mass. Together these results clearly show that caging does not result in indications of stress in wild migrating northern wheatears. Confinement-specific conditions such as restricted movement normally stress animals. We suggest migratory birds may not perceive such conditions as stressors due to their hyperphagic state, a notion that requires further testing.


Subject(s)
Animal Migration/physiology , Animals, Wild , Corticosterone/analysis , Passeriformes/physiology , Restraint, Physical/psychology , Animals , Animals, Wild/blood , Animals, Wild/psychology , Corticosterone/blood , Eating/physiology , Glucocorticoids/analysis , Glucocorticoids/blood , Housing, Animal , Passeriformes/blood , Restraint, Physical/veterinary , Seasons , Stress, Psychological/blood , Stress, Psychological/diagnosis , Stress, Psychological/etiology
13.
Physiol Behav ; 194: 450-455, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29958878

ABSTRACT

The spectacular natural phenomenon of avian migration is evidently shaped by physical factors, but we know little about the underlying physiological regulation. This contrast is especially apparent for the process of departure on a migratory flight. The decision to resume migration is shaped by a suite of departure cues from innate rhythms, and intrinsic and extrinsic factors. It currently appears that these departure cues are translated into actual departure by the hormone corticosterone, but other hormones may play a role too and probably interact with corticosterone. We captured this concept here by investigating the role of the hormone ghrelin and its interaction with corticosterone for the departure decision in a migratory songbird. Ghrelin functions as an appetite-regulating hormone. It has also been suggested to be involved in the regulation of departure by upregulating corticosterone in migrants ready to depart, and by facilitating the breakdown of lipids to fuel migratory flight. We measured plasmatic ghrelin and corticosterone levels in migrating common blackbirds (Turdus merula) at an autumnal stopover site, and determined their departure timing with the use of a fully-automated radio-telemetry system. Against our expectations, ghrelin level was not correlated with the birds' lipid stores or with corticosterone level. Furthermore, departure likelihood and nocturnal departure time were not associated with ghrelin levels. Our study thus does not support the idea that ghrelin is involved in the regulation of departure from stopover, at least not in common blackbirds. We discuss possible reasons for the lack of confirmation of our expectations.


Subject(s)
Animal Migration/physiology , Corticosterone/physiology , Ghrelin/physiology , Animals , Corticosterone/blood , Cues , Female , Ghrelin/blood , Lipid Metabolism , Male , Songbirds , Telemetry
14.
Ecol Evol ; 8(5): 2721-2728, 2018 03.
Article in English | MEDLINE | ID: mdl-29531689

ABSTRACT

Migration is energetically demanding and physiologically challenging. Migrating birds, for example, need to boost their antioxidant defenses to defeat the pro-oxidants produced during high energetic activity. The enhanced antioxidant defense possibly withdraws limited resources (e.g., energy or micronutrients) from other physiological functions, such as immune defense. Such a trade-off might not occur outside the migration seasons or in resident individuals. Here, we investigate whether there is a negative relationship between innate immune function and antioxidant defense by sampling both migrating and resident blackbirds (Turdus merula) at the same location during the same period of the annual cycle. We show that in migrating blackbirds microbial killing capacity (BKA), an integrative measure of baseline innate immune function was negatively correlated with total nonenzymatic antioxidant capacity. In contrast, in resident conspecifics, sampled at the same time and location, these two physiological measures were not correlated. This suggests that migrating birds trade off innate immune function and antioxidant defense. Furthermore, and likely a consequence of this trade-off, in migrant blackbirds BKA was positively correlated with oxidative damage to lipids. In resident blackbirds BKA and degree of lipid oxidation were uncorrelated. The mechanism and currencies of the supposed trade-off are currently unknown, but energetic investments or micronutrients are likely candidates. Future experimental studies could provide more conclusive evidence for this trade-off; yet, our results open up a new level of thinking about the physiological costs of migration.

15.
J Anim Ecol ; 87(4): 1102-1115, 2018 07.
Article in English | MEDLINE | ID: mdl-29504627

ABSTRACT

Most migratory songbirds travel between their breeding areas and wintering grounds through a series of nocturnal flights. The timing of their departures defines the potential flight duration and thus the distance covered during a migratory night. Yet, migratory songbirds show substantial variation in their nocturnal departure timing. With this study, we aim to assess whether the respective challenges of the migration route, namely its distance and nature, help to explain this variation. At a stopover site, we caught Northern Wheatears (Oenanthe oenanthe) of two subspecies that differ in distance and nature of their onward migration route in spring, but not in autumn. We determined the start of their nocturnal migratory restlessness during short-term captivity, and radiotracked their nocturnal departure timing after release in both migration seasons. Northern Wheatears started their nocturnal migratory restlessness earlier when facing a long remaining migration distance and an extended sea barrier in spring. Individual departure directions generally affected the nocturnal departure timing with early departures being directed towards the respective migratory destination. In spring, this pattern was predominantly found in birds carrying relatively large fuel stores, but was absent in lean birds. At the same time, birds facing a short remaining migration distance and no extended sea barrier strongly reacted to relatively large fuel stores by an early start of nocturnal migratory behaviour (migratory restlessness and departure timing), whereas this reaction was not found in birds facing a long remaining migration distance and sea barrier. These results suggest that the basic diel schedule of birds' migratory activity is adapted to the onward migration route. Further, they suggest that birds adjust their behavioural response, that is start of nocturnal migratory behaviour, to fuel stores in relation to their impending migratory challenges. This is a substantial step in understanding variation of nocturnal departure timing and its adjustments in migratory songbirds. Further, it emphasizes the importance of interpreting birds' nocturnal migratory behaviour in the respective ecological context.


Subject(s)
Animal Distribution , Animal Migration , Songbirds/physiology , Animals , Germany , Seasons , Time Factors
16.
Gen Comp Endocrinol ; 261: 59-66, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29397064

ABSTRACT

Most migrating birds make multiple stopovers to fuel and/or rest. The decision to resume migration from stopover is based on various cues, such as time within the season and wind conditions. There are hints that the strength of these departure cues shapes corticosterone level, which in its turn appears to regulate the timing of departure. We here provide results that very strongly indicate that indeed departure cues jointly shape corticosterone level of migrants at stopover. We compared corticosterone level between migrating and sedentary common blackbirds (Turdus merula) sampled simultaneously at the same location during autumn migration. As expected, in migrating individuals corticosterone level was positively associated with time within the season and with current wind conditions. The latter was only apparent in adult birds and not in 1st year migrants, thus matching the observation that 1st year autumnal migrants are less wind selective than adults. In contrast to the migrants, in sedentary blackbirds these "cues" did not explain variation in corticosterone level. Furthermore, stopover departure seemed more likely and to occur earlier in the night in migrants with high corticosterone level. Our unique comparative study thus supports the newly developed concept that corticosterone mediates between departure cues and stopover departure timing in avian migrants.


Subject(s)
Animal Migration/physiology , Corticosterone/metabolism , Cues , Decision Making , Songbirds/physiology , Animals , Linear Models , Male , Time Factors
17.
Horm Behav ; 99: 9-13, 2018 03.
Article in English | MEDLINE | ID: mdl-29408015

ABSTRACT

Most migrating birds make stopovers to replenish fuel stores. The decision to resume migration from stopover to a large extent shapes the temporal organization of migration. This decision is known to be shaped by a suite of intrinsic and extrinsic factors such as the bird's fuel stores and current weather conditions. However, how departures from stopover are physiologically regulated is largely unknown. We here present data that strongly indicate that corticosterone, a hormone with a stimulatory effect on locomotion, acts as a mediator between fuel stores and departure from stopover. In migrating northern wheatears (Oenanthe oenanthe) temporarily caged at stopover, we observed a positive relationship between the change in fuel stores and the concurrent change in glucocorticoid metabolite (GCM) levels measured in the birds' droppings. We also found a positive relationship between the change in GCM levels and the change in the intensity of nocturnal migratory restlessness. As in northern wheatears nocturnal migratory restlessness is an accurate proxy for stopover departure likelihood, our results indicate that corticosterone mediates between fuel stores and the decision to resume migration. Our unique longitudinal study represents a considerable advance in our understanding of the endocrine regulation of avian migration.


Subject(s)
Animal Migration/physiology , Hormones/physiology , Passeriformes/physiology , Rest/physiology , Animals , Corticosterone/metabolism , Energy Metabolism/drug effects , Energy Metabolism/physiology , Glucocorticoids/metabolism , Hormones/pharmacology , Longitudinal Studies , Movement/drug effects , Movement/physiology , Psychomotor Agitation/metabolism , Rest/psychology
18.
Article in English | MEDLINE | ID: mdl-28332031

ABSTRACT

In birds, accumulating energy is far slower than spending energy during flight. During migration, birds spend, therefore, most of the time at stopover refueling energy used during the previous flight. This elucidates why current energy stores and actual rate of accumulating energy are likely crucial factors influencing bird's decision when to resume migration in addition to other intrinsic (sex, age) and extrinsic (predation, weather) factors modulating the decision within the innate migration program. After first summarizing how energy stores and stopover durations are generally determined, we critically review that high-energy stores and low rates of accumulating energy were significantly related to high departure probabilities in several bird groups. There are, however, also many studies showing no effect at all. Recent radio-tracking studies highlighted that migrants leave a site either to resume migration or to search for a better stopover location, so-called "landscape movements". Erroneously treating such movements as departures increases the likelihood of type II errors which might mistakenly suggest no effect of either trait on departure. Furthermore, we propose that energy loss during the previous migratory flight in relation to bird's current energy stores and migration strategy significantly affects its urge to refuel and hence its departure decision.


Subject(s)
Animal Migration/physiology , Birds/physiology , Energy Metabolism/physiology , Animals , Decision Making/physiology , Energy Intake/physiology
19.
Physiol Biochem Zool ; 90(2): 223-229, 2017.
Article in English | MEDLINE | ID: mdl-28277962

ABSTRACT

Most avian migrants alternate flight bouts, characterized by high metabolic rates, with stopovers, periods of fuel replenishment through hyperphagia. High-energy metabolism and excessive calorie intake shift the balance between damaging prooxidants and antioxidants toward the former. Hence, migration likely affects the oxidative balance of birds. Migratory flight indeed appears to cause oxidative damage; however, whether migration affects the oxidative state of birds at stopover is unclear. Therefore, we compared total nonenzymatic antioxidant capacity (AOX) and malondialdehyde concentration (MDA; a measure of lipid peroxidation) in the plasma of migrant and resident common blackbirds. We also determined plasmatic uric acid (UA) and fatty acid (FA) concentrations and calculated a FA peroxidation index. Birds were sampled during autumn migration at a stopover site that also supports a sedentary blackbird population. Migrants had higher AOX than residents, also after correcting for UA concentration. Migrants tended to have higher FA peroxidation indexes than residents, indicating that the energy source of migrants contains higher concentrations of peroxidizable FAs. However, the two groups did not differ in MDA concentration, also not after correcting for peroxidation index. Peroxidation-corrected MDA concentration was negatively correlated with UA-corrected AOX. In other words, individuals with low nonenzymatic AOX suffered more from lipid peroxidation than individuals with high nonenzymatic AOX. These results together indicate that migrant blackbirds invest in antioxidant defenses to reduce oxidative damage to lipids, likely representing an adaptation to diminish the physiological costs of migration.


Subject(s)
Animal Migration , Energy Metabolism/physiology , Flight, Animal/physiology , Oxidative Stress/physiology , Passeriformes/physiology , Animals
20.
Article in English | MEDLINE | ID: mdl-28213760

ABSTRACT

To support migratory endurance flight, birds accumulate large amounts of fat by hyperphagia (fueling). Whereas the factors influencing migrants' motivation to fuel are well described, the physiological mechanism regulating fueling is largely unknown. Hormones are likely involved and arguably the best studied with respect to food intake and fueling is corticosterone. Corticosterone has a permissive effect, as blocking the hormone's actions prohibits efficient fueling. There are no indications, though that corticosterone stimulates fueling, and some studies even observed negative correlations between corticosterone level and food intake and speed of fueling. The latter is unexpected as slow fueling could reduce the overall speed of migration. To test the causality of these negative correlations, I non-invasively increased circulating corticosterone levels in captive migrants and determined its effect on food intake and fuel accumulation. Neither food intake nor fuel accumulation differed between corticosterone-treated and control-treated individuals. This indicates that corticosterone does not hamper food intake and fueling during stopovers, nor does it stimulate these processes. Promising alternative candidates for the regulation of migratory hyperphagia are 'appetite regulating' hormones secreted by the adipose tissue, gut, or gastro-intestinal tract. The advance of next-generation sequencing will facilitate a bottom-up approach when investigating these.


Subject(s)
Animal Migration/physiology , Birds/physiology , Corticosterone/metabolism , Eating/physiology , Endocrine System/physiology , Animals , Anti-Inflammatory Agents/pharmacology , Corticosterone/pharmacology , Eating/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...