Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Trace Elem Med Biol ; 48: 224-232, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29773185

ABSTRACT

INTRODUCTION: Shotgun pellets containing bismuth (Bi) as substitute for lead (Pb) are increasingly being used due to environmental concerns. Information on toxicokinetics of Bi is lacking for the assessment of humans accidentally shot by Bi-containing shotgun alloy pellets. METHODS: Male Wistar rats were exposed to miniature alloy pellets containing Bi, tin (Sn) and minor amounts of Pb by implantation in muscle tissues of the hind legs. RESULTS: The concentrations of Bi in whole blood and urine increased up to 53 weeks after implantation. The highest concentrations of Sn in whole blood were observed three weeks after implantation, then declining to background levels 53 weeks after implantation. Lead in whole blood increased up to 13 weeks of exposure, and declined for the remaining observation period. Bismuth and Sn accumulated mainly in kidney, but also in liver, testicle and brain. Analytical field emission scanning electron microscopy of post-implant pellets showed depletion of Pb towards the pellet surface. Oxygen and chlorine accumulated in Sn rich lamellas in areas next to the pellet surface. The distribution of Bi remained visually unaffected as compared to pre-implant pellets. CONCLUSION: The concentration of Bi increased during the whole observation period in blood, urine, kidney, brain, testicle and liver. The decline in the concentrations of Pb and Sn in blood and urine after reaching the peak concentration may be related to alterations in the chemical composition and element distribution of the implanted alloy pellets.


Subject(s)
Bismuth/pharmacokinetics , Environmental Pollutants/pharmacokinetics , Lead/pharmacokinetics , Tin/pharmacokinetics , Animals , Bismuth/blood , Bismuth/urine , Environmental Pollutants/blood , Environmental Pollutants/urine , Kinetics , Lead/blood , Lead/urine , Male , Microscopy, Electron, Scanning , Rats , Rats, Wistar , Tin/blood , Tin/urine , Tissue Distribution
2.
Nanotoxicology ; 12(6): 522-538, 2018 08.
Article in English | MEDLINE | ID: mdl-29742950

ABSTRACT

Upon inhalation, multi-walled carbon nanotubes (MWCNTs) may reach the subpleura and pleural spaces, and induce pleural inflammation and/or mesothelioma in humans. However, the mechanisms of MWCNT-induced pathology after direct intrapleural injections are still only partly elucidated. In particular, a role of the proinflammatory interleukin-1 (IL-1) cytokines in pleural inflammation has so far not been published. We examined the MWCNT-induced pleural inflammation, gene expression abnormalities, and the modifying role of IL-1α and ß cytokines following intrapleural injection of two types of MWCNTs (CNT-1 and CNT-2) compared with crocidolite asbestos in IL-1 wild-type (WT) and IL-1α/ß KO (IL1-KO) mice. Histopathological examination of the pleura 28 days post-exposure revealed mesothelial cell hyperplasia, leukocyte infiltration, and fibrosis occurring in the CNT-1 (Mitsui-7)-exposed group. The pleura of these mice also showed the greatest changes in mRNA and miRNA expression levels, closely followed by CNT-2. In addition, the CNT-1-exposed group also presented the greatest infiltrations of leukocytes and proliferation of fibrous tissue. WT mice were more prone to development of sustained inflammation and fibrosis than IL1-KO mice. Prominent differences in genetic and epigenetic changes were also observed between the two genotypes. In conclusion, the fibrotic response to MWCNTs in the pleura depends on the particles' physico-chemical properties and on the presence or absence of the IL-1 genes. Furthermore, we found that CNT-1 was the most potent inducer of inflammatory responses, followed by CNT-2 and crocidolite asbestos.


Subject(s)
Inflammation/chemically induced , Interleukin-1/genetics , Nanotubes, Carbon/toxicity , Pleural Cavity/drug effects , Animals , Asbestos, Crocidolite/toxicity , Fibrosis , Mice , Mice, Inbred C57BL , Pleural Cavity/pathology
3.
Am J Physiol Endocrinol Metab ; 308(3): E231-40, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25465888

ABSTRACT

Epinephrine increases glycogen synthase (GS) phosphorylation and decreases GS activity but also stimulates glycogen breakdown, and low glycogen content normally activates GS. To test the hypothesis that glycogen content directly regulates GS phosphorylation, glycogen breakdown was stimulated in condition with decreased GS activation. Saline or epinephrine (0.02 mg/100 g rat) was injected subcutaneously in Wistar rats (∼130 g) with low (24-h-fasted), normal (normal diet), and high glycogen content (fasted-refed), and epitrochlearis muscles were removed after 3 h and incubated ex vivo, eliminating epinephrine action. Epinephrine injection reduced glycogen content in epitrochlearis muscles with high (120.7 ± 17.8 vs. 204.6 ± 14.5 mmol/kg, P < 0.01) and normal glycogen (89.5 ± 7.6 vs. 152 ± 8.1 mmol/kg, P < 0.01), but not significantly in muscles with low glycogen (90.0 ± 5.0 vs. 102.8 ± 7.8 mmol/kg, P = 0.17). In saline-injected rats, GS phosphorylation at sites 2+2a, 3a+3b, and 1b was higher and GS activity lower in muscles with high compared with low glycogen. GS sites 2+2a and 3a+3b phosphorylation decreased and GS activity increased in muscles where epinephrine decreased glycogen content; these parameters were unchanged in epitrochlearis from fasted rats where epinephrine injection did not decrease glycogen content. Incubation with insulin decreased GS site 3a+3b phosphorylation independently of glycogen content. Insulin-stimulated glucose uptake was increased in muscles where epinephrine injection decreased glycogen content. In conclusion, epinephrine stimulates glycogenolysis in epitrochlearis muscles with normal and high, but not low, glycogen content. Epinephrine-stimulated glycogenolysis decreased GS phosphorylation and increased GS activity. These data for the first time document direct regulation of GS phosphorylation by glycogen content.


Subject(s)
Epinephrine/administration & dosage , Glucose/metabolism , Glycogen Synthase/metabolism , Glycogen/metabolism , Insulin/pharmacology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Animals , Biological Transport/drug effects , Diet , Enzyme Activation/drug effects , Male , Rats , Rats, Wistar , Up-Regulation/drug effects
4.
Anal Bioanal Chem ; 404(1): 89-99, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22627704

ABSTRACT

In recent years, bismuth has been promoted as a "green element" and is used as a substitute for the toxic lead in ammunition and other applications. However, the bioavailability and toxicity of bismuth is still not very well described. Following a hunting accident with bismuth-containing shots, a bioavailability study of bismuth from metal pellets inoculated into rat limb muscles was carried out. Bismuth could be found in urine and blood of the animals. Bio-imaging using laser ablation ICP-MS of thin sections of the tissue around the metal implant was carried out to find out more about the distribution of the metal diffusing into the tissue. Two laser ablation systems with different ablation cell designs were compared regarding their analytical performance. Low concentrations of bismuth showing a non-symmetrical pattern were detected in the tissue surrounding the metal implant. This was partly an artefact from cutting the thin sections but also bio-mobilisation of the metals of the implant could be seen. An accumulation of zinc around the implant was interpreted as a marker of inflammation. Challenges regarding sample preparation for laser ablation and bio-imaging of samples of diverse composition became apparent during the analysis.


Subject(s)
Bismuth/pharmacokinetics , Laser Therapy/methods , Mass Spectrometry/methods , Molecular Imaging/methods , Wounds, Gunshot/diagnosis , Animals , Biological Availability , Bismuth/analysis , Firearms , Humans , Laser Therapy/instrumentation , Male , Mass Spectrometry/instrumentation , Rats , Rats, Wistar , Wounds, Gunshot/metabolism
5.
Chem Commun (Camb) ; 47(43): 11867-9, 2011 Nov 21.
Article in English | MEDLINE | ID: mdl-21975652

ABSTRACT

A new zeotype titanium silicate oxidation catalyst with the STT topology has been synthesized from direct synthesis. Ti-STT has a microporous structure with small pore openings, allowing shape selective oxidation catalysis. The isomorphous substitution of Si by Ti in the framework has been confirmed by Raman, FT-IR, UV-VIS and XANES spectroscopies.

6.
Int J Cancer ; 118(11): 2899-902, 2006 Jun 01.
Article in English | MEDLINE | ID: mdl-16381012

ABSTRACT

DNA mismatch repair (MMR) is essential for repair of single-base mismatches and insertion/deletion loops. MMR proteins also participate in cellular response to DNA damaging agents such as various alkylating agents. Mice deficient in the MMR gene Msh2 develop tumors earlier after exposure to alkylating agents when compared to unexposed mice. The interaction between the MMR system and polycyclic aromatic hydrocarbons such as benzo[a]pyrene (B[a]P) has not been investigated in vivo. Here, we show that treatment of Msh2-deficient mice with B[a]P enhances susceptibility to lymphomagenesis. Carrying at least one intact copy of the Msh2 gene had a protective effect. B[a]P treatment only induced lymphomas in 3 of the 40 (7.5%) mice with at least one intact copy of the Msh2 gene as compared to 13 of the 17 (76.5%) Msh2-deficient mice and occurs only after a much longer time period. The B[a]P-DNA adduct levels measured in lung, liver, spleen and forestomach of B[a]P-treated Msh2-/- mice were not significantly different from B[a]P-treated Msh2+/+ mice. In summary, the results suggest that B[a]P accelerates lymphomagenesis in Msh2-deficient mice. Furthermore, Msh2 deficiency does not have any significant effect on B[a]P-DNA adduct levels.


Subject(s)
Benzo(a)pyrene/toxicity , Lymphoma/chemically induced , MutS Homolog 2 Protein/genetics , Animals , DNA Adducts , DNA Damage , DNA Repair , Female , Lymphoma/genetics , Male , Mice , Mice, Knockout , MutS Homolog 2 Protein/physiology
7.
Lung Cancer ; 45(3): 289-97, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15301869

ABSTRACT

Epidemiological and biochemical studies have indicated that females may be at greater risk of smoking associated lung cancer compared with males. Among lung cancer patients, female smokers have been found to have higher levels of PAH-related DNA adducts and CYP1A1 gene expression in their normal lung tissue compared to male smokers. A possible role of steroid hormones in these sex differences via interactions between aryl hydrocarbon receptor and estrogen receptor mediated cellular effects has been suggested. In the present study the impact of the estrogen receptor (ERalpha) on CYP1A1 and CYP1B1 gene expression was studied in vitro in human bronchial epithelial cells. Transient transfection of the BEP2D cell line with ERalpha influenced neither constitutive expression of CYP1A1 or CYP1B1 nor induction of these genes by TCDD as measured by real-time RT-PCR. ERalpha had no effect on the constitutive or TCDD-induced enzymatic activity of CYP1A1 (EROD). We also studied the effect of steroid hormones on lung PAH metabolic activation in A/J mice. Intact and ovariectomized female mice were orally exposed to a single dose of benzo[a]pyrene. Ovariectomy did not influence the levels of either benzo[a]pyrene-derived protein or DNA adducts in the lung tissue measured by HPLC and 32P-postlabeling, respectively. In conclusion, the present data do not support the hypothesis of a role of estrogen or the ERalpha in regulating the metabolic activation of polycyclic aromatic hydrocarbons in lung.


Subject(s)
Aryl Hydrocarbon Hydroxylases/biosynthesis , Cytochrome P-450 CYP1A1/biosynthesis , Estrogens/pharmacology , Gene Expression Regulation, Neoplastic , Lung Neoplasms/physiopathology , Polycyclic Aromatic Hydrocarbons/metabolism , Receptors, Estrogen/physiology , Administration, Oral , Animals , Aryl Hydrocarbon Hydroxylases/pharmacology , Benzo(a)pyrene/administration & dosage , Benzo(a)pyrene/toxicity , Cell Culture Techniques , Cytochrome P-450 CYP1A1/pharmacology , Cytochrome P-450 CYP1B1 , DNA, Neoplasm/analysis , Estrogen Receptor alpha , Female , Humans , Mice , Ovariectomy , Reverse Transcriptase Polymerase Chain Reaction , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...