Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Nat Commun ; 15(1): 4342, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773143

ABSTRACT

Intra-tumor heterogeneity compromises the clinical value of transcriptomic classifications of colorectal cancer. We investigated the prognostic effect of transcriptomic heterogeneity and the potential for classifications less vulnerable to heterogeneity in a single-hospital series of 1093 tumor samples from 692 patients, including multiregional samples from 98 primary tumors and 35 primary-metastasis sets. We show that intra-tumor heterogeneity of the consensus molecular subtypes (CMS) is frequent and has poor-prognostic associations independently of tumor microenvironment markers. Multiregional transcriptomics uncover cancer cell-intrinsic and low-heterogeneity signals that recapitulate the intrinsic CMSs proposed by single-cell sequencing. Further subclassification identifies congruent CMSs that explain a larger proportion of variation in patient survival than intra-tumor heterogeneity. Plasticity is indicated by discordant intrinsic phenotypes of matched primary and metastatic tumors. We conclude that multiregional sampling reconciles the prognostic power of tumor classifications from single-cell and bulk transcriptomics in the context of intra-tumor heterogeneity, and phenotypic plasticity challenges the reconciliation of primary and metastatic subtypes.


Subject(s)
Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , Genetic Heterogeneity , Transcriptome , Tumor Microenvironment , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/mortality , Colorectal Neoplasms/classification , Prognosis , Tumor Microenvironment/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Profiling/methods , Female , Male , Single-Cell Analysis/methods , Aged , Middle Aged
2.
Cell Oncol (Dordr) ; 47(4): 1267-1276, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38407700

ABSTRACT

BACKGROUND: Tumor-associated macrophages (TAMs) are associated with unfavorable patient prognosis in many cancer types. However, TAMs are a heterogeneous cell population and subsets have been shown to activate tumor-infiltrating T cells and confer a good patient prognosis. Data on the prognostic value of TAMs in colorectal cancer are conflicting. We investigated the prognostic effect of TAMs in relation to tumor-infiltrating T cells in colorectal cancers. METHODS: The TAM markers CD68 and CD163 were analyzed by multiplex fluorescence immunohistochemistry and digital image analysis on tissue microarrays of 1720 primary colorectal cancers. TAM density in the tumor stroma was scored in relation to T cell density (stromal CD3+ and epithelial CD8+ cells) and analyzed in Cox proportional hazards models of 5-year relapse-free survival. Multivariable survival models included clinicopathological factors, MSI status and BRAFV600E mutation status. RESULTS: High TAM density was associated with a favorable 5-year relapse-free survival in a multivariable model of patients with stage I-III tumors (p = 0.004, hazard ratio 0.94, 95% confidence interval 0.90-0.98). However, the prognostic effect was dependent on tumoral T-cell density. High TAM density was associated with a good prognosis in patients who also had high T-cell levels in their tumors, while high TAM density was associated with poorer prognosis in patients with low T-cell levels (pinteraction = 0.0006). This prognostic heterogeneity was found for microsatellite stable tumors separately. CONCLUSIONS: This study supported a phenotypic heterogeneity of TAMs in colorectal cancer, and showed that combined tumor immunophenotyping of multiple immune cell types improved the prediction of patient prognosis.


Subject(s)
Colorectal Neoplasms , Lymphocytes, Tumor-Infiltrating , Neoplasm Staging , Tumor-Associated Macrophages , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/genetics , Male , Female , Prognosis , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/pathology , Middle Aged , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/pathology , Aged , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Adult , Aged, 80 and over , Proportional Hazards Models
3.
EBioMedicine ; 97: 104829, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37837931

ABSTRACT

BACKGROUND: Malignant peripheral nerve sheath tumour (MPNST) is an aggressive orphan disease commonly affecting adolescents or young adults. Current knowledge of molecular tumour biology has been insufficient for development of rational treatment strategies. We aimed to discover molecular subtypes of potential clinical relevance. METHODS: Fresh frozen samples of MPNSTs (n = 94) and benign neurofibromas (n = 28) from 115 patients in a European multicentre study were analysed by DNA copy number and/or transcriptomic profiling. Unsupervised transcriptomic subtyping was performed and the subtypes characterized for genomic aberrations, clinicopathological associations and patient survival. FINDINGS: MPNSTs were classified into two transcriptomic subtypes defined primarily by immune signatures and proliferative processes. "Immune active" MPNSTs (44%) had sustained immune signals relative to neurofibromas, were more frequently low-grade (P = 0.01) and had favourable prognostic associations in a multivariable model of disease-specific survival with clinicopathological factors (hazard ratio 0.25, P = 0.003). "Immune deficient" MPNSTs were more aggressive and characterized by proliferative signatures, high genomic complexity, aberrant TP53 and PRC2 loss, as well as high relative expression of several potential actionable targets (EGFR, ERBB2, EZH2, KIF11, PLK1, RRM2). Integrated gene-wise analyses suggested a DNA copy number-basis for proliferative transcriptomic signatures in particular, and the tumour copy number burden further stratified the transcriptomic subtypes according to patient prognosis (P < 0.01). INTERPRETATION: Approximately half of MPNSTs belong to an "immune deficient" transcriptomic subtype associated with an aggressive disease course, PRC2 loss and expression of several potential therapeutic targets, providing a rationale for molecularly-guided intervention trials. FUNDING: Research grants from non-profit organizations, as stated in the Acknowledgements.


Subject(s)
Nerve Sheath Neoplasms , Neurofibroma , Neurofibrosarcoma , Adolescent , Young Adult , Humans , Nerve Sheath Neoplasms/diagnosis , Nerve Sheath Neoplasms/genetics , Nerve Sheath Neoplasms/metabolism , Transcriptome , Neurofibroma/genetics , Neurofibroma/pathology , Genomics , DNA
4.
Genome Med ; 13(1): 142, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34470667

ABSTRACT

BACKGROUND: Colorectal cancer is the 2nd leading cause of cancer-related deaths with few patients benefiting from biomarker-guided therapy. Mutation expression is essential for accurate interpretation of mutations as biomarkers, but surprisingly, little has been done to analyze somatic cancer mutations on the expression level. We report a large-scale analysis of allele-specific mutation expression. METHODS: Whole-exome and total RNA sequencing was performed on 137 samples from 121 microsatellite stable colorectal cancers, including multiregional samples of primary and metastatic tumors from 4 patients. Data were integrated with allele-specific resolution. Results were validated in an independent set of 241 colon cancers. Therapeutic associations were explored by pharmacogenomic profiling of 15 cell lines or patient-derived organoids. RESULTS: The median proportion of expressed mutations per tumor was 34%. Cancer-critical mutations had the highest expression frequency (gene-wise mean of 58%), independent of frequent allelic imbalance. Systematic deviation from the general pattern of expression levels according to allelic frequencies was detected, including preferential expression of mutated alleles dependent on the mutation type and target gene. Translational relevance was suggested by correlations of KRAS/NRAS or TP53 mutation expression levels with downstream oncogenic signatures (p < 0.03), overall survival among patients with stage II and III cancer (KRAS/NRAS: hazard ratio 6.1, p = 0.0070), and targeted drug sensitivity. The latter was demonstrated for EGFR and MDM2 inhibition in pre-clinical models. CONCLUSIONS: Only a subset of mutations in microsatellite stable colorectal cancers were expressed, and the "expressed mutation dose" may provide an opportunity for more fine-tuned biomarker interpretations.


Subject(s)
Colorectal Neoplasms/genetics , Microsatellite Repeats , Mutation , Antineoplastic Agents/therapeutic use , ErbB Receptors , GTP Phosphohydrolases , Humans , Membrane Proteins , Proto-Oncogene Proteins c-mdm2 , Proto-Oncogene Proteins p21(ras) , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Exome Sequencing
5.
Genome Med ; 13(1): 143, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34470666

ABSTRACT

BACKGROUND: Gene expression-based subtyping has the potential to form a new paradigm for stratified treatment of colorectal cancer. However, current frameworks are based on the transcriptomic profiles of primary tumors, and metastatic heterogeneity is a challenge. Here we aimed to develop a de novo metastasis-oriented framework. METHODS: In total, 829 transcriptomic profiles from patients with colorectal cancer were analyzed, including primary tumors, liver metastases, and non-malignant liver samples. High-resolution microarray gene expression profiling was performed of 283 liver metastases from 171 patients treated by hepatic resection, including multiregional and/or multi-metastatic samples from each of 47 patients. A single randomly selected liver metastasis sample from each patient was used for unsupervised subtype discovery by nonnegative matrix factorization, and a random forest prediction model was trained to classify multi-metastatic samples, as well as liver metastases from two independent series of 308 additional patients. RESULTS: Initial comparisons with non-malignant liver samples and primary colorectal tumors showed a highly variable degree of influence from the liver microenvironment in metastases, which contributed to inter-metastatic transcriptomic heterogeneity, but did not define subtype distinctions. The de novo liver metastasis subtype (LMS) framework recapitulated the main distinction between epithelial-like and mesenchymal-like tumors, with a strong immune and stromal component only in the latter. We also identified biologically distinct epithelial-like subtypes originating from different progenitor cell types. LMS1 metastases had several transcriptomic features of cancer aggressiveness, including secretory progenitor cell origin, oncogenic addictions, and microsatellite instability in a microsatellite stable background, as well as frequent RAS/TP53 co-mutations. The poor-prognostic association of LMS1 metastases was independent of mutation status, clinicopathological variables, and current subtyping frameworks (consensus molecular subtypes and colorectal cancer intrinsic subtypes). LMS1 was also the least heterogeneous subtype in comparisons of multiple metastases per patient, and tumor heterogeneity did not confound the prognostic value of LMS1. CONCLUSIONS: We report the first large study of multi-metastatic gene expression profiling of colorectal cancer. The new metastasis-oriented subtyping framework showed potential for clinically relevant transcriptomic classification in the context of metastatic heterogeneity, and an LMS1 mini-classifier was constructed to facilitate prognostic stratification and further clinical testing.


Subject(s)
Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Transcriptome , Adult , Aged , Aged, 80 and over , Female , Genetic Heterogeneity , Humans , Liver/metabolism , Male , Microarray Analysis , Microsatellite Instability , Middle Aged , Mutation , Prognosis , Tumor Microenvironment , Young Adult
6.
NPJ Genom Med ; 6(1): 59, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34262039

ABSTRACT

Gene expression-based subtypes of colorectal cancer have clinical relevance, but the representativeness of primary tumors and the consensus molecular subtypes (CMS) for metastatic cancers is not well known. We investigated the metastatic heterogeneity of CMS. The best approach to subtype translation was delineated by comparisons of transcriptomic profiles from 317 primary tumors and 295 liver metastases, including multi-metastatic samples from 45 patients and 14 primary-metastasis sets. Associations were validated in an external data set (n = 618). Projection of metastases onto principal components of primary tumors showed that metastases were depleted of CMS1-immune/CMS3-metabolic signals, enriched for CMS4-mesenchymal/stromal signals, and heavily influenced by the microenvironment. The tailored CMS classifier (available in an updated version of the R package CMScaller) therefore implemented an approach to regress out the liver tissue background. The majority of classified metastases were either CMS2 or CMS4. Nonetheless, subtype switching and inter-metastatic CMS heterogeneity were frequent and increased with sampling intensity. Poor-prognostic value of CMS1/3 metastases was consistent in the context of intra-patient tumor heterogeneity.

7.
EBioMedicine ; 59: 102923, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32799124

ABSTRACT

BACKGROUND: PARP inhibitors are active in various tumour types beyond BRCA-mutant cancers, but their activity and molecular correlates in colorectal cancer (CRC) are not well studied. METHODS: Mutations and genome-wide mutational patterns associated with homologous recombination deficiency (HRD) were investigated in 255 primary CRCs with whole-exome sequencing and/or DNA copy number data. Efficacy of five PARP inhibitors and their molecular correlates were evaluated in 93 CRC cell lines partly annotated with mutational-, DNA copy number-, and/or gene expression profiles. Post-treatment gene expression profiling and specific protein expression analyses were performed in two pairs of PARP inhibitor sensitive and resistant cell lines. FINDINGS: A subset of microsatellite stable (MSS) CRCs had truncating mutations in homologous recombination-related genes, but these were not associated with genomic signatures of HRD. Eight CRC cell lines (9%) were sensitive to PARP inhibition, but sensitivity was not predicted by HRD-related genomic and transcriptomic signatures. In contrast, drug sensitivity in MSS cell lines was strongly associated with TP53 wild-type status (odds ratio 15.7, p = 0.023) and TP53-related expression signatures. Increased downstream TP53 activity was among the primary response mechanisms, and TP53 inhibition antagonized the effect of PARP inhibitors. Wild-type TP53-mediated suppression of RAD51 was identified as a possible mechanism of action for sensitivity to PARP inhibition. INTERPRETATION: PARP inhibitors are active in a subset of CRC cell lines and preserved TP53 function may increase the likelihood of response.


Subject(s)
Colorectal Neoplasms/metabolism , Homologous Recombination , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerases/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/etiology , DNA Copy Number Variations , Gene Expression Profiling , Humans , Mice , Mutation , Neoplasm Staging , Prognosis , Transcriptome , Tumor Suppressor Protein p53/genetics , Exome Sequencing
8.
Clin Cancer Res ; 26(15): 4107-4119, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32299813

ABSTRACT

PURPOSE: Molecular tumor heterogeneity may have important implications for the efficacy of targeted therapies in metastatic cancers. Inter-metastatic heterogeneity of sensitivity to anticancer agents has not been well explored in colorectal cancer. EXPERIMENTAL DESIGN: We established a platform for ex vivo pharmacogenomic profiling of patient-derived organoids (PDO) from resected colorectal cancer liver metastases. Drug sensitivity testing (n = 40 clinically relevant agents) and gene expression profiling were performed on 39 metastases from 22 patients. RESULTS: Three drug-response clusters were identified among the colorectal cancer metastases, based primarily on sensitivities to EGFR and/or MDM2 inhibition, and corresponding with RAS mutations and TP53 activity. Potentially effective therapies, including off-label use of drugs approved for other cancer types, could be nominated for eighteen patients (82%). Antimetabolites and targeted agents lacking a decisive genomic marker had stronger differential activity than most approved chemotherapies. We found limited intra-patient drug sensitivity heterogeneity between PDOs from multiple (2-5) liver metastases from each of ten patients. This was recapitulated at the gene expression level, with a highly proportional degree of transcriptomic and pharmacological variation. One PDO with a multi-drug resistance profile, including resistance to EGFR inhibition in a RAS-mutant background, showed sensitivity to MEK plus mTOR/AKT inhibition, corresponding with low-level PTEN expression. CONCLUSIONS: Intra-patient inter-metastatic pharmacological heterogeneity was not pronounced and ex vivo drug screening may identify novel treatment options for metastatic colorectal cancer. Variation in drug sensitivities was reflected at the transcriptomic level, suggesting potential to develop gene expression-based predictive signatures to guide experimental therapies.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Colorectal Neoplasms/therapy , Drug Resistance, Neoplasm/genetics , Liver Neoplasms/therapy , Adult , Aged , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biological Variation, Individual , Chemotherapy, Adjuvant , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Drug Screening Assays, Antitumor , Drug Synergism , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genetic Heterogeneity , Hepatectomy , Humans , Liver/pathology , Liver/surgery , Liver Neoplasms/genetics , Liver Neoplasms/secondary , Male , Middle Aged , Neoadjuvant Therapy/methods , Organoids , Pharmacogenomic Variants , Precision Medicine/methods , Primary Cell Culture/methods , Tumor Cells, Cultured
9.
Cancer Lett ; 469: 246-255, 2020 01 28.
Article in English | MEDLINE | ID: mdl-31678167

ABSTRACT

Gene expression profiling has increasing relevance in the molecular screening of patients with colorectal cancer (CRC). We investigated potential platform-specific effects on transcriptomic subtyping according to established frameworks by comparisons of expression profiles from RNA sequencing and exon-resolution microarrays in 126 primary microsatellite stable CRCs. There was a strong platform correspondence in global gene expression levels, albeit with systematic technical bias likely attributed to few sequencing reads covering short (<2000 nucleotides) and/or lowly expressed genes (<1 FPKM), as well as over-saturation of highly expressed genes on microarrays. Classification concordances according to both the consensus molecular subtypes and CRC intrinsic subtypes (CRIS) were also strong, but with disproportionate subtype distributions between platforms caused by frequent disagreements in adherence to sample classification thresholds. Subtypes defined largely by genes expressed at low levels, including the CRIS-D subtype and the estimated level of tumor-infiltrating cytotoxic lymphocytes, had a weaker correspondence in classification metrics between platforms. In conclusion, even subtle differences between platforms suggest that clinical translation of transcriptomic CRC subtyping frameworks is dependent on assay standardization, and systematic technical biases reinforce the need for careful selection of classifier genes.


Subject(s)
Colorectal Neoplasms/genetics , Gene Expression Regulation, Neoplastic/genetics , Microarray Analysis , Transcriptome/genetics , Biomarkers, Tumor , Colorectal Neoplasms/classification , Colorectal Neoplasms/pathology , Exons/genetics , Gene Expression Profiling/methods , Humans , Mutation/genetics , Sequence Analysis, RNA/methods
10.
ESMO Open ; 4(3): e000523, 2019.
Article in English | MEDLINE | ID: mdl-31321083

ABSTRACT

BACKGROUND: Accumulating evidence suggests immunomodulatory and context-dependent effects of TP53 mutations in cancer. We performed an exploratory analysis of the transcriptional, immunobiological and prognostic associations of TP53 mutations within the gene expression-based consensus molecular subtypes (CMSs) of colorectal cancer (CRC). MATERIALS AND METHODS: In a single-hospital series of 401 stage I-IV primary CRCs, we sequenced the whole coding region of TP53 and analysed CMS-dependent transcriptional consequences of the mutations by gene expression profiling. Immunomodulatory associations were validated by multiplex, fluorescence-based immunohistochemistry of immune cell markers. Prognostic associations of TP53 mutations were analysed in an aggregated series of 635 patients classified according to CMS, including publicly available data from a French multicentre cohort (GSE39582). RESULTS: TP53 mutations were found in 60% of the CRCs. However, gene set enrichment analyses indicated that their transcriptional consequences varied among the CMSs and were most pronounced in CMS1-immune and CMS4-mesenchymal. Subtype specificity was primarily seen as an upregulation of gene sets reflecting cell cycle progression in CMS4 and a downregulation of T cell activity in CMS1. The subtype-dependent immunomodulatory associations were reinforced by significant depletion of several immune cell populations in mutated tumours compared with wild-type (wt) tumours exclusively in CMS1, including cytotoxic lymphocytes (adjusted p value in CMS1=0.002 and CMS2-4>0.9, Microenvironment Cell Populations (MCP)-counter algorithm). This was validated by immunohistochemistry-based quantification of tumour infiltrating CD8+ cells. Within CMS1, the immunomodulatory association of TP53 mutations was strongest among microsatellite stable (MSS) tumours, and this translated into a propensity for metastatic disease and poor prognostic value of the mutations specifically in the CMS1/MSS subtype (both series overall survival: TP53 mutation vs wt: HR 5.52, p=0.028). CONCLUSIONS: Integration of TP53 mutation status with the CMS framework in primary CRC suggested subtype-dependent immunobiological associations with prognostic and potentially immunotherapeutic implications, warranting independent validation.

11.
Oncogenesis ; 8(6): 35, 2019 May 15.
Article in English | MEDLINE | ID: mdl-31092812

ABSTRACT

TP53 mutations are common in colorectal cancer (CRC). Most TP53 sequencing studies have been restricted to coding regions, but recent studies have revealed that splice mutations can generate transcript variants with distinct tumorigenic and prognostic properties. Here, we performed unrestricted sequencing of all coding sequences and splice regions of TP53 in a single-hospital series of 401 primary CRCs. TP53 splice mutations were detected in 4% of the cases (N = 16), considerably more frequent than reported in major databases, and they were mutually exclusive to exon mutations. RNA sequencing revealed high-level expression of aberrant transcript variants in the majority of splice mutated tumors (75%). Most variants were predicted to produce truncated TP53 proteins, including one sample expressing the potentially oncogenic and druggable p53ψ isoform. Despite heterogeneous transcript structures, downstream transcriptional profiling revealed that TP53 splice mutations had similar effects on TP53 target gene expression and pathway activity as exonic mutations. Intriguingly, TP53 splice mutations were associated with worse 5-year relapse-free survival in stage II disease, compared to both TP53 wild-type and exon mutations (P = 0.007). These data highlight the importance of including splice regions when examining the biological and clinical consequences of TP53 mutations in CRC.

12.
Int J Cancer ; 144(11): 2843-2853, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30447009

ABSTRACT

Elevated miR-31 expression is associated with poor outcome in colorectal cancer (CRC). Whether the prognostic information is independent of known molecular subgroups and gene expression-based consensus molecular subtypes (CMS) is currently unknown. To investigate this, we analyzed nearly 2000 CRC biopsies and preclinical models. The expression of miR-31-5p and its host transcript, long noncoding RNA MIR31HG, was strongly correlated (Spearman's ρ > 0.80). MIR31HG outlier expression was observed in 158/1265 (12%) of pCRCs and was associated with depletion of CMS2-canonical subgroup (odds ratio = 0.21 [0.11-0.35]) and shorter relapse-free survival (RFS) in multivariable analysis (adjusted hazard ratio = 2.2 [1.6-3.0]). For stage II disease, 5-year RFS for patients with MIR31HG outlier status was 49% compared to 77% for those with normal-like expression. MIR31HG outlier status was associated with inferior outcome also within clinical high risk groups and within the poor prognostic CMS4-mesenchymal gene expression subtype specifically. Preclinical models with MIR31HG outlier expression were characterized by reduced expression of MYC targets as well as elevated epithelial-mesenchymal transition, TNF-α/NFκB, TGF-ß, and IFN-α/γ gene expression signatures, indicating cancer cell-intrinsic properties resembling the CMS4 subgroup-associations which were recapitulated in patient biopsies. Moreover, the prognostic value of MIR31HG outlier status was independent of cytotoxic T lymphocyte and fibroblast infiltration. We here present evidence that MIR31HG expression provides clinical stratification beyond major gene expression phenotypes and tumor immune and stromal cell infiltration and propose a model where increased expression is an indicator of a cellular state conferring intrinsic invasive and/or immuno-evasive capabilities.


Subject(s)
Biomarkers, Tumor/metabolism , Colorectal Neoplasms/pathology , RNA, Long Noncoding/metabolism , Adult , Aged , Aged, 80 and over , Biopsy , Cell Line, Tumor , Colorectal Neoplasms/mortality , Datasets as Topic , Disease-Free Survival , Female , Humans , Male , MicroRNAs/metabolism , Middle Aged , Neoplasm Staging , Prognosis , Survival Analysis , Young Adult
13.
Int J Cancer ; 144(4): 841-847, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30121958

ABSTRACT

KRAS mutation is a well-known marker for poor response to targeted treatment and patient prognosis in microsatellite stable (MSS) colorectal cancer (CRC). However, variation in clinical outcomes among patients wild-type for KRAS underlines that this is not a homogeneous population. Here, we evaluated the prognostic impact of KRAS alternative splicing in relation to mutation status in a single-hospital series of primary MSS CRCs (N = 258). Using splicing-sensitive microarrays and RNA sequencing, the relative expression of KRAS-4A versus KRAS-4B transcript variants was confirmed to be down-regulated in CRC compared to normal colonic mucosa (N = 41; p ≤ 0.001). This was independent of mutation status, however, gene set enrichment analysis revealed that the effect of splicing on KRAS signaling was specific to the KRAS wild-type subgroup, in which low relative KRAS-4A expression was associated with a higher level of KRAS signaling (p = 0.005). In concordance, the prognostic value of KRAS splicing was also dependent on mutation status, and for patients with Stage I-III KRAS wild-type MSS CRC, low relative KRAS-4A expression was associated with inferior overall survival (HR: 2.36, 95% CI: 1.07-5.18, p = 0.033), a result not found in mutant cases (pinteraction = 0.026). The prognostic association in the wild-type subgroup was independent of clinicopathological factors, including cancer stage in multivariable analysis (HR: 2.68, 95% CI: 1.18-6.09, p = 0.018). This suggests that KRAS has prognostic value beyond mutation status in MSS CRC, and highlights the importance of molecular heterogeneity in the clinically relevant KRAS wild-type subgroup.


Subject(s)
Alternative Splicing , Colorectal Neoplasms/genetics , Microsatellite Instability , Proto-Oncogene Proteins p21(ras)/genetics , Adult , Aged , Aged, 80 and over , Colorectal Neoplasms/pathology , Disease-Free Survival , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Mutation , Prognosis
14.
Mod Pathol ; 31(11): 1694-1707, 2018 11.
Article in English | MEDLINE | ID: mdl-29946184

ABSTRACT

Malignant peripheral nerve sheath tumor is a rare and aggressive disease with poor treatment response, mainly affecting adolescents and young adults. Few molecular biomarkers are used in the management of this cancer type, and although TP53 is one of few recurrently mutated genes in malignant peripheral nerve sheath tumor, the mutation prevalence and the corresponding clinical value of the TP53 network remains unsettled. We present a multi-level molecular study focused on aberrations in the TP53 network in relation to patient outcome in a series of malignant peripheral nerve sheath tumors from 100 patients and 38 neurofibromas, including TP53 sequencing, high-resolution copy number analyses of TP53 and MDM2, and gene expression profiling. Point mutations in TP53 were accompanied by loss of heterozygosity, resulting in complete loss of protein function in 8.2% of the malignant peripheral nerve sheath tumors. Another 5.5% had MDM2 amplification. TP53 mutation and MDM2 amplification were mutually exclusive and patients with either type of aberration in their tumor had a worse prognosis, compared to those without (hazard ratio for 5-year disease-specific survival 3.5, 95% confidence interval 1.78-6.98). Both aberrations had similar consequences on the gene expression level, as analyzed by a TP53-associated gene signature, a property also shared with the copy number aberrations and/or loss of heterozygosity at the TP53 locus, suggesting a common "TP53-mutated phenotype" in as many as 60% of the tumors. This was a poor prognostic phenotype (hazard ratio = 4.1, confidence interval:1.7-9.8), thus revealing a TP53-non-aberrant patient subgroup with a favorable outcome. The frequency of the "TP53-mutated phenotype" warrants explorative studies of stratified treatment strategies in malignant peripheral nerve sheath tumor.


Subject(s)
Nerve Sheath Neoplasms/genetics , Nerve Sheath Neoplasms/pathology , Neurofibrosarcoma/genetics , Neurofibrosarcoma/pathology , Tumor Suppressor Protein p53/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Child , Female , Gene Amplification , Genes, p53/genetics , Humans , Male , Middle Aged , Mutation , Nerve Sheath Neoplasms/mortality , Neurofibrosarcoma/mortality , Prognosis , Proto-Oncogene Proteins c-mdm2/genetics , Young Adult
15.
Mol Oncol ; 12(9): 1639-1655, 2018 09.
Article in English | MEDLINE | ID: mdl-29900672

ABSTRACT

We aimed to refine the value of CDX2 as an independent prognostic and predictive biomarker in colorectal cancer (CRC) according to disease stage and chemotherapy sensitivity in preclinical models. CDX2 expression was evaluated in 1045 stage I-IV primary CRCs by gene expression (n = 403) or immunohistochemistry (n = 642) and in relation to 5-year relapse-free survival (RFS), overall survival (OS), and chemotherapy. Pharmacogenomic associations between CDX2 expression and 69 chemotherapeutics were assessed by drug screening of 35 CRC cell lines. CDX2 expression was lost in 11.6% of cases and showed independent poor prognostic value in multivariable models. For individual stages, CDX2 was prognostic only in stage IV, independent of chemotherapy. Among stage I-III patients not treated in an adjuvant setting, CDX2 loss was associated with a particularly poor survival in the BRAF-mutated subgroup, but prognostic value was independent of microsatellite instability status and the consensus molecular subtypes. In stage III, the 5-year RFS rate was higher among patients with loss of CDX2 who received adjuvant chemotherapy than among patients who did not. The CDX2-negative cell lines were significantly more sensitive to chemotherapeutics than CDX2-positive cells, and the multidrug resistance genes MDR1 and CFTR were significantly downregulated both in CDX2-negative cells and in patient tumors. Loss of CDX2 in CRC is an adverse prognostic biomarker only in stage IV disease and appears to be associated with benefit from adjuvant chemotherapy in stage III. Early-stage patients not qualifying for chemotherapy might be reconsidered for such treatment if their tumor has loss of CDX2 and mutated BRAF.


Subject(s)
Biomarkers, Tumor/genetics , CDX2 Transcription Factor/genetics , Colorectal Neoplasms/drug therapy , Pharmacogenomic Testing , Chemotherapy, Adjuvant , Colorectal Neoplasms/genetics , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Disease-Free Survival , Female , Gene Expression , Hospitals, University , Humans , Kaplan-Meier Estimate , Male , Microsatellite Instability , Multivariate Analysis , Mutation , Neoplasm Staging , Norway , Prognosis , Proportional Hazards Models , Proto-Oncogene Proteins B-raf/genetics , Registries , Retrospective Studies , Survival Analysis
16.
Clin Cancer Res ; 24(4): 794-806, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29242316

ABSTRACT

Purpose: Response to standard oncologic treatment is limited in colorectal cancer. The gene expression-based consensus molecular subtypes (CMS) provide a new paradigm for stratified treatment and drug repurposing; however, drug discovery is currently limited by the lack of translation of CMS to preclinical models.Experimental Design: We analyzed CMS in primary colorectal cancers, cell lines, and patient-derived xenografts (PDX). For classification of preclinical models, we developed an optimized classifier enriched for cancer cell-intrinsic gene expression signals, and performed high-throughput in vitro drug screening (n = 459 drugs) to analyze subtype-specific drug sensitivities.Results: The distinct molecular and clinicopathologic characteristics of each CMS group were validated in a single-hospital series of 409 primary colorectal cancers. The new, cancer cell-adapted classifier was found to perform well in primary tumors, and applied to a panel of 148 cell lines and 32 PDXs, these colorectal cancer models were shown to recapitulate the biology of the CMS groups. Drug screening of 33 cell lines demonstrated subtype-dependent response profiles, confirming strong response to EGFR and HER2 inhibitors in the CMS2 epithelial/canonical group, and revealing strong sensitivity to HSP90 inhibitors in cells with the CMS1 microsatellite instability/immune and CMS4 mesenchymal phenotypes. This association was validated in vitro in additional CMS-predicted cell lines. Combination treatment with 5-fluorouracil and luminespib showed potential to alleviate chemoresistance in a CMS4 PDX model, an effect not seen in a chemosensitive CMS2 PDX model.Conclusions: We provide translation of CMS classification to preclinical models and uncover a potential for targeted treatment repurposing in the chemoresistant CMS4 group. Clin Cancer Res; 24(4); 794-806. ©2017 AACR.


Subject(s)
Biomarkers, Tumor/genetics , Colorectal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Xenograft Model Antitumor Assays , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Colorectal Neoplasms/classification , Colorectal Neoplasms/drug therapy , Consensus , Fluorouracil/administration & dosage , Gene Expression Profiling/methods , Humans , Isoxazoles/administration & dosage , Mice, Nude , Mice, SCID , Resorcinols/administration & dosage
17.
Mol Cancer ; 16(1): 116, 2017 07 06.
Article in English | MEDLINE | ID: mdl-28683746

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) cell lines are widely used pre-clinical model systems. Comprehensive insights into their molecular characteristics may improve model selection for biomedical studies. METHODS: We have performed DNA, RNA and protein profiling of 34 cell lines, including (i) targeted deep sequencing (n = 612 genes) to detect single nucleotide variants and insertions/deletions; (ii) high resolution DNA copy number profiling; (iii) gene expression profiling at exon resolution; (iv) small RNA expression profiling by deep sequencing; and (v) protein expression analysis (n = 297 proteins) by reverse phase protein microarrays. RESULTS: The cell lines were stratified according to the key molecular subtypes of CRC and data were integrated at two or more levels by computational analyses. We confirm that the frequencies and patterns of DNA aberrations are associated with genomic instability phenotypes and that the cell lines recapitulate the genomic profiles of primary carcinomas. Intrinsic expression subgroups are distinct from genomic subtypes, but consistent at the gene-, microRNA- and protein-level and dominated by two distinct clusters; colon-like cell lines characterized by expression of gastro-intestinal differentiation markers and undifferentiated cell lines showing upregulation of epithelial-mesenchymal transition and TGFß signatures. This sample split was concordant with the gene expression-based consensus molecular subtypes of primary tumors. Approximately » of the genes had consistent regulation at the DNA copy number and gene expression level, while expression of gene-protein pairs in general was strongly correlated. Consistent high-level DNA copy number amplification and outlier gene- and protein- expression was found for several oncogenes in individual cell lines, including MYC and ERBB2. CONCLUSIONS: This study expands the view of CRC cell lines as accurate molecular models of primary carcinomas, and we present integrated multi-level molecular data of 34 widely used cell lines in easily accessible formats, providing a resource for preclinical studies in CRC.


Subject(s)
Biomedical Research , Colorectal Neoplasms/metabolism , Genomics , Proteomics , Base Sequence , Cell Differentiation , Cell Line, Tumor , Colon/pathology , Colorectal Neoplasms/genetics , DNA Copy Number Variations , Gene Amplification , Gene Expression Regulation, Neoplastic , Genes, Neoplasm , Genomic Instability , Humans , INDEL Mutation/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Mutation/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
18.
Mol Oncol ; 11(9): 1156-1171, 2017 09.
Article in English | MEDLINE | ID: mdl-28556483

ABSTRACT

Patients with malignant peripheral nerve sheath tumor (MPNST), a rare soft tissue cancer associated with loss of the tumor suppressor neurofibromin (NF1), have poor prognosis and typically respond poorly to adjuvant therapy. We evaluated the effect of 299 clinical and investigational compounds on seven MPNST cell lines, two primary cultures of human Schwann cells, and five normal bone marrow aspirates, to identify potent drugs for MPNST treatment with few side effects. Top hits included Polo-like kinase 1 (PLK1) inhibitors (volasertib and BI2536) and the fluoronucleoside gemcitabine, which were validated in orthogonal assays measuring viability, cytotoxicity, and apoptosis. DNA copy number, gene expression, and protein expression were determined for the cell lines to assess pharmacogenomic relationships. MPNST cells were more sensitive to BI2536 and gemcitabine compared to a reference set of 94 cancer cell lines. PLK1, RRM1, and RRM2 mRNA levels were increased in MPNST compared to benign neurofibroma tissue, and the protein level of PLK1 was increased in the MPNST cell lines compared to normal Schwann cells, indicating an increased dependence on these drug targets in malignant cells. Furthermore, we observed an association between increased mRNA expression of PLK1, RRM1, and RRM2 in patient samples and worse disease outcome, suggesting a selective benefit from inhibition of these genes in the most aggressive tumors.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Deoxycytidine/analogs & derivatives , Drug Resistance, Neoplasm , Nerve Sheath Neoplasms/drug therapy , Nerve Sheath Neoplasms/enzymology , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Apoptosis/drug effects , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Clinical Trials as Topic , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Nerve Sheath Neoplasms/genetics , Nerve Sheath Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Reproducibility of Results , Ribonucleoside Diphosphate Reductase/genetics , Ribonucleoside Diphosphate Reductase/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Gemcitabine , Polo-Like Kinase 1
19.
Genome Med ; 9(1): 46, 2017 05 24.
Article in English | MEDLINE | ID: mdl-28539123

ABSTRACT

BACKGROUND: Approximately 15% of primary colorectal cancers have DNA mismatch repair deficiency, causing a complex genome with thousands of small mutations-the microsatellite instability (MSI) phenotype. We investigated molecular heterogeneity and tumor immunogenicity in relation to clinical endpoints within this distinct subtype of colorectal cancers. METHODS: A total of 333 primary MSI+ colorectal tumors from multiple cohorts were analyzed by multilevel genomics and computational modeling-including mutation profiling, clonality modeling, and neoantigen prediction in a subset of the tumors, as well as gene expression profiling for consensus molecular subtypes (CMS) and immune cell infiltration. RESULTS: Novel, frequent frameshift mutations in four cancer-critical genes were identified by deep exome sequencing, including in CRTC1, BCL9, JAK1, and PTCH1. JAK1 loss-of-function mutations were validated with an overall frequency of 20% in Norwegian and British patients, and mutated tumors had up-regulation of transcriptional signatures associated with resistance to anti-PD-1 treatment. Clonality analyses revealed a high level of intra-tumor heterogeneity; however, this was not associated with disease progression. Among the MSI+ tumors, the total mutation load correlated with the number of predicted neoantigens (P = 4 × 10-5), but not with immune cell infiltration-this was dependent on the CMS class; MSI+ tumors in CMS1 were highly immunogenic compared to MSI+ tumors in CMS2-4. Both JAK1 mutations and CMS1 were favorable prognostic factors (hazard ratios 0.2 [0.05-0.9] and 0.4 [0.2-0.9], respectively, P = 0.03 and 0.02). CONCLUSIONS: Multilevel genomic analyses of MSI+ colorectal cancer revealed molecular heterogeneity with clinical relevance, including tumor immunogenicity and a favorable patient outcome associated with JAK1 mutations and the transcriptomic subgroup CMS1, emphasizing the potential for prognostic stratification of this clinically important subtype. See related research highlight by Samstein and Chan 10.1186/s13073-017-0438-9.


Subject(s)
Colorectal Neoplasms/genetics , Janus Kinase 1/genetics , Microsatellite Instability , Mutation , Adult , Aged , Aged, 80 and over , Colorectal Neoplasms/metabolism , DNA Mutational Analysis , Female , Gene Expression Profiling , Genomics , Humans , Male , Middle Aged
20.
Cancer Lett ; 385: 150-159, 2017 01 28.
Article in English | MEDLINE | ID: mdl-27984115

ABSTRACT

MicroRNAs (miRNAs) are small, non-coding RNAs that mediate post-transcriptional gene silencing, fine tuning gene expression. In an initial screen, miRNAs were found to be globally down-regulated in prostate cancer (PCa) cell lines and primary tumours. Exposure of PCa cell lines to a demethylating agent, 5-Aza-CdR resulted in an increase in the expression levels of miRNAs in general. Using stringent filtering criteria miR-130a was identified as the most promising candidate and selected for validation analyses in our patient series. Down-regulation of miR-130a was associated with promoter hypermethylation. MiR-130a methylation levels discriminated PCa from non-malignant tissues (AUC = 0.956), and urine samples revealed high specificity for non-invasive detection of patients with PCa (AUC = 0.89). Additionally, repressive histone marks were also found in the promoter of miR-130a. Over-expression of miR-130a in PCa cells reduced cell viability and invasion capability, and increased apoptosis. Putative targets of miR-130a were assessed by microarray expression profiling and DEPD1C and SEC23B were selected for validation. Silencing of both genes resembled the effect of over-expressing miR-130a in PCa cells. Our data indicate that miR-130a is an epigenetically regulated miRNA involved in regulation of key molecular and phenotypic features of prostate carcinogenesis, acting as a tumour suppressor miRNA.


Subject(s)
Biomarkers, Tumor/genetics , Epigenesis, Genetic , GTPase-Activating Proteins/genetics , Genes, Tumor Suppressor , MicroRNAs/genetics , Neoplasm Proteins/genetics , Prostatic Neoplasms/genetics , Vesicular Transport Proteins/genetics , Apoptosis , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Cell Movement , Cell Survival , Chromatin Assembly and Disassembly , DNA Methylation , DNA Modification Methylases/antagonists & inhibitors , DNA Modification Methylases/metabolism , Enzyme Inhibitors/pharmacology , Epigenesis, Genetic/drug effects , GTPase-Activating Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Silencing , Histones/metabolism , Humans , Male , MicroRNAs/metabolism , Neoplasm Invasiveness , Neoplasm Proteins/metabolism , Promoter Regions, Genetic , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Signal Transduction , Transfection , Vesicular Transport Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL