Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 160: 111669, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33181943

ABSTRACT

Legislations and commitments regulate Baltic Sea status assessments and monitoring. These assessments suffer from monitoring gaps that need prioritization. We used three sources of information; scientific articles, project reports and a stakeholder survey to identify gaps in relation to requirements set by the HELCOM's Baltic Sea Action Plan, the Marine Strategy Framework Directive and the Water Framework Directive. The most frequently mentioned gap was that key requirements are not sufficiently monitored in space and time. Biodiversity monitoring was the category containing most gaps. However, whereas more than half of the gaps in reports related to biodiversity, scientific articles pointed out many gaps in the monitoring of pollution and water quality. An important finding was that the three sources differed notably with respect to which gaps were mentioned most often. Thus, conclusions about gap prioritization for management should be drawn after carefully considering the different viewpoints of scientists and stakeholders.


Subject(s)
Biodiversity , Environmental Monitoring , Baltic States , Oceans and Seas
2.
Ambio ; 48(11): 1362-1376, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31506843

ABSTRACT

Aiming to inform both marine management and the public, coupled environmental-climate scenario simulations for the future Baltic Sea are analyzed. The projections are performed under two greenhouse gas concentration scenarios (medium and high-end) and three nutrient load scenarios spanning the range of plausible socio-economic pathways. Assuming an optimistic scenario with perfect implementation of the Baltic Sea Action Plan (BSAP), the projections suggest that the achievement of Good Environmental Status will take at least a few more decades. However, for the perception of the attractiveness of beach recreational sites, extreme events such as tropical nights, record-breaking sea surface temperature (SST), and cyanobacteria blooms may be more important than mean ecosystem indicators. Our projections suggest that the incidence of record-breaking summer SSTs will increase significantly. Under the BSAP, record-breaking cyanobacteria blooms will no longer occur in the future, but may reappear at the end of the century in a business-as-usual nutrient load scenario.


Subject(s)
Cyanobacteria , Ecosystem , Baltic States , Climate Change , Oceans and Seas , Temperature
3.
Ambio ; 44 Suppl 3: 345-56, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26022318

ABSTRACT

Climate change is likely to have large effects on the Baltic Sea ecosystem. Simulations indicate 2-4 °C warming and 50-80 % decrease in ice cover by 2100. Precipitation may increase ~30 % in the north, causing increased land runoff of allochthonous organic matter (AOM) and organic pollutants and decreased salinity. Coupled physical-biogeochemical models indicate that, in the south, bottom-water anoxia may spread, reducing cod recruitment and increasing sediment phosphorus release, thus promoting cyanobacterial blooms. In the north, heterotrophic bacteria will be favored by AOM, while phytoplankton production may be reduced. Extra trophic levels in the food web may increase energy losses and consequently reduce fish production. Future management of the Baltic Sea must consider the effects of climate change on the ecosystem dynamics and functions, as well as the effects of anthropogenic nutrient and pollutant load. Monitoring should have a holistic approach, encompassing both autotrophic (phytoplankton) and heterotrophic (e.g., bacterial) processes.


Subject(s)
Climate Change , Ecosystem , Phytoplankton
4.
Ambio ; 43(1): 37-48, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24414803

ABSTRACT

We present a multi-model ensemble study for the Baltic Sea, and investigate the combined impact of changing climate, external nutrient supply, and fisheries on the marine ecosystem. The applied regional climate system model contains state-of-the-art component models for the atmosphere, sea ice, ocean, land surface, terrestrial and marine biogeochemistry, and marine food-web. Time-dependent scenario simulations for the period 1960-2100 are performed and uncertainties of future projections are estimated. In addition, reconstructions since 1850 are carried out to evaluate the models sensitivity to external stressors on long time scales. Information from scenario simulations are used to support decision-makers and stakeholders and to raise awareness of climate change, environmental problems, and possible abatement strategies among the general public using geovisualization. It is concluded that the study results are relevant for the Baltic Sea Action Plan of the Helsinki Commission.


Subject(s)
Climate Change , Ecosystem , Baltic States , Oceans and Seas
5.
Ambio ; 41(6): 534-48, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22926877

ABSTRACT

A comprehensive reconstruction of the Baltic Sea state from 1850 to 2006 is presented: driving forces are reconstructed and the evolution of the hydrography and biogeochemical cycles is simulated using the model BALTSEM. Driven by high resolution atmospheric forcing fields (HiResAFF), BALTSEM reproduces dynamics of salinity, temperature, and maximum ice extent. Nutrient loads have been increasing with a noteworthy acceleration from the 1950s until peak values around 1980 followed by a decrease continuing up to present. BALTSEM shows a delayed response to the massive load increase with most eutrophic conditions occurring only at the end of the simulation. This is accompanied by an intensification of the pelagic cycling driven by a shift from spring to summer primary production. The simulation indicates that no improvement in water quality of the Baltic Sea compared to its present state can be expected from the decrease in nutrient loads in recent decades.


Subject(s)
Eutrophication , Baltic States , History, 19th Century , History, 20th Century , History, 21st Century , Oceans and Seas
6.
Ambio ; 41(6): 549-57, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22926878

ABSTRACT

In this study, a consistent basin-wise monthly time series of the atmospheric nutrient load to the Baltic Sea during 1850-2006 was compiled. Due to the lack of a long time series (1850-1960) of nutrient deposition to the Baltic Sea, the data set was compiled by combining a time series of deposition data at the Baltic Nest Institute from 1970 to 2006, published historical monitoring data and deposition estimates, as well as recent modeled Representative Concentration Pathways (RCP) emission estimates. The procedure for nitrogen compounds included estimation of the deposition in a few intermediate reference years, linear interpolation between them, and the decomposition of annual deposition into a seasonal deposition pattern. As no reliable monitoring results were found for the atmospheric deposition of phosphorus during the early period of our study, we used published estimates for the temporal and spatial pattern of the phosphorus load.


Subject(s)
Atmosphere , Models, Theoretical , Baltic States , History, 19th Century , History, 20th Century , History, 21st Century , Nitrogen/analysis , Oceans and Seas , Phosphorus/analysis
7.
Ambio ; 41(6): 558-73, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22926879

ABSTRACT

Multi-model ensemble simulations using three coupled physical-biogeochemical models were performed to calculate the combined impact of projected future climate change and plausible nutrient load changes on biogeochemical cycles in the Baltic Sea. Climate projections for 1961-2099 were combined with four nutrient load scenarios ranging from a pessimistic business-as-usual to a more optimistic case following the Helsinki Commission's (HELCOM) Baltic Sea Action Plan (BSAP). The model results suggest that in a future climate, water quality, characterized by ecological quality indicators like winter nutrient, summer bottom oxygen, and annual mean phytoplankton concentrations as well as annual mean Secchi depth (water transparency), will be deteriorated compared to present conditions. In case of nutrient load reductions required by the BSAP, water quality is only slightly improved. Based on the analysis of biogeochemical fluxes, we find that in warmer and more anoxic waters, internal feedbacks could be reinforced. Increased phosphorus fluxes out of the sediments, reduced denitrification efficiency and increased nitrogen fixation may partly counteract nutrient load abatement strategies.


Subject(s)
Climate Change , Ecology , Models, Theoretical , Baltic States , Geology , Oceans and Seas , Phytoplankton/growth & development , Phytoplankton/isolation & purification
8.
Ambio ; 41(6): 574-85, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22926880

ABSTRACT

In the future, the Baltic Sea ecosystem will be impacted both by climate change and by riverine and atmospheric nutrient inputs. Multi-model ensemble simulations comprising one IPCC scenario (A1B), two global climate models, two regional climate models, and three Baltic Sea ecosystem models were performed to elucidate the combined effect of climate change and changes in nutrient inputs. This study focuses on the occurrence of extreme events in the projected future climate. Results suggest that the number of days favoring cyanobacteria blooms could increase, anoxic events may become more frequent and last longer, and salinity may tend to decrease. Nutrient load reductions following the Baltic Sea Action Plan can reduce the deterioration of oxygen conditions.


Subject(s)
Climate Change , Eutrophication , Oxygen/analysis , Temperature , Baltic States , Oceans and Seas
9.
Ambio ; 41(6): 586-99, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22926881

ABSTRACT

We quantified horizontal transport patterns and the net exchange of nutrients between shallow regions and the open sea in the Baltic proper. A coupled biogeochemical-physical circulation model was used for transient simulations 1961-2100. The model was driven by regional downscaling of the IPCC climate change scenario A1B from two global General Circulation Models in combination with two nutrient load scenarios. Modeled nutrient transports followed mainly the large-scale internal water circulation and showed only small circulation changes in the future projections. The internal nutrient cycling and exchanges between shallow and deeper waters became intensified, and the internal removal of phosphorus became weaker in the warmer future climate. These effects counteracted the impact from nutrient load reductions according to the Baltic Sea Action Plan. The net effect of climate change and nutrient reductions was an increased net import of dissolved inorganic phosphorus to shallow areas in the Baltic proper.


Subject(s)
Climate Change , Models, Theoretical , Baltic States , Oceans and Seas
SELECTION OF CITATIONS
SEARCH DETAIL
...