Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981131

ABSTRACT

The postsynaptic density (PSD) comprises numerous scaffolding proteins, receptors, and signaling molecules that coordinate synaptic transmission in the brain. Postsynaptic density protein 95 (PSD-95) is a master scaffold protein within the PSD and one of its most abundant proteins and therefore constitutes a very attractive biomarker of PSD function and its pathological changes. Here, we exploit a high-affinity inhibitor of PSD-95, AVLX-144, as a template for developing probes for molecular imaging of the PSD. AVLX-144-based probes were labeled with the radioisotopes fluorine-18 and tritium, as well as a fluorescent tag. Tracer binding showed saturable, displaceable, and uneven distribution in rat brain slices, proving effective in quantitative autoradiography and cell imaging studies. Notably, we observed diminished tracer binding in human post-mortem Parkinson's disease (PD) brain slices, suggesting postsynaptic impairment in PD. We thus offer a suite of translational probes for visualizing and understanding PSD-related pathologies.

2.
Int J Mol Sci ; 25(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38542220

ABSTRACT

The accumulation of lipid droplets (LDs) and ceramides (Cer) is linked to non-alcoholic fatty liver disease (NAFLD), regularly co-existing with type 2 diabetes and decreased immune function. Chronic inflammation and increased disease severity in viral infections are the hallmarks of the obesity-related immunopathology. The upregulation of neutral sphingomyelinase-2 (NSM2) has shown to be associated with the pathology of obesity in tissues. Nevertheless, the role of sphingolipids and specifically of NSM2 in the regulation of immune cell response to a fatty acid (FA) rich environment is poorly studied. Here, we identified the presence of the LD marker protein perilipin 3 (PLIN3) in the intracellular nano-environment of NSM2 using the ascorbate peroxidase APEX2-catalyzed proximity-dependent biotin labeling method. In line with this, super-resolution structured illumination microscopy (SIM) shows NSM2 and PLIN3 co-localization in LD organelles in the presence of increased extracellular concentrations of oleic acid (OA). Furthermore, the association of enzymatically active NSM2 with isolated LDs correlates with increased Cer levels in these lipid storage organelles. NSM2 enzymatic activity is not required for NSM2 association with LDs, but negatively affects the LD numbers and cellular accumulation of long-chain unsaturated triacylglycerol (TAG) species. Concurrently, NSM2 expression promotes mitochondrial respiration and fatty acid oxidation (FAO) in response to increased OA levels, thereby shifting cells to a high energetic state. Importantly, endogenous NSM2 activity is crucial for primary human CD4+ T cell survival and proliferation in a FA rich environment. To conclude, our study shows a novel NSM2 intracellular localization to LDs and the role of enzymatically active NSM2 in metabolic response to enhanced FA concentrations in T cells.


Subject(s)
Diabetes Mellitus, Type 2 , Sphingomyelin Phosphodiesterase , Humans , Diabetes Mellitus, Type 2/metabolism , Fatty Acids/metabolism , Lipid Droplets/metabolism , Lipid Metabolism , Obesity/metabolism , Oleic Acid/metabolism , Sphingomyelin Phosphodiesterase/metabolism , T-Lymphocytes/metabolism , Triglycerides/metabolism
3.
Front Cell Neurosci ; 18: 1328726, 2024.
Article in English | MEDLINE | ID: mdl-38486709

ABSTRACT

High fidelity synaptic neurotransmission in the millisecond range is provided by a defined structural arrangement of synaptic proteins. At the presynapse multi-epitope scaffolding proteins are organized spatially at release sites to guarantee optimal binding of neurotransmitters at receptor clusters. The organization of pre- and postsynaptic proteins in trans-synaptic nanocolumns would thus intuitively support efficient information transfer at the synapse. Visualization of these protein-dense regions as well as the minute size of protein-packed synaptic clefts remains, however, challenging. To enable efficient labeling of these protein complexes, we developed post-gelation immunolabeling expansion microscopy combined with Airyscan super-resolution microscopy. Using ~8-fold expanded samples, Airyscan enables multicolor fluorescence imaging with 20-40 nm spatial resolution. Post-immunolabeling of decrowded (expanded) samples provides increased labeling efficiency and allows the visualization of trans-synaptic nanocolumns. Our approach is ideally suited to investigate the pathological impact on nanocolumn arrangement e.g., in limbic encephalitis with autoantibodies targeting trans-synaptic leucine-rich glioma inactivated 1 protein (LGI1).

4.
Neurophotonics ; 10(4): 044412, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37886043

ABSTRACT

Significance: Understanding the organization of biomolecules into complexes and their dynamics is crucial for comprehending cellular functions and dysfunctions, particularly in neuronal networks connected by synapses. In the last two decades, various powerful super-resolution (SR) microscopy techniques have been developed that produced stunning images of synapses and their molecular organization. However, current SR microscopy methods do not permit multicolor fluorescence imaging with 20 to 30 nm spatial resolution. Aim: We developed a method that enables 4-color fluorescence imaging of synaptic proteins in neurons with 20 to 30 nm lateral resolution. Approach: We used post-expansion immunolabeling of eightfold expanded hippocampal neurons in combination with Airyscan and structured illumination microscopy (SIM). Results: We demonstrate that post-expansion immunolabeling of approximately eightfold expanded hippocampal neurons enables efficient labeling of synaptic proteins in crowded compartments with minimal linkage error and enables in combination with Airyscan and SIM four-color three-dimensional fluorescence imaging with 20 to 30 nm lateral resolution. Using immunolabeling of Synaptobrevin 2 as an efficient marker of the vesicle pool allowed us to identify individual synaptic vesicles colocalized with Rab3-interacting molecule 1 and 2 (RIM1/2), a marker of pre-synaptic fusion sites. Conclusions: Our optimized expansion microscopy approach improves the visualization and location of pre- and post-synaptic proteins and can thus provide invaluable insights into the spatial organization of proteins at synapses.

5.
Transl Neurodegener ; 11(1): 31, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35650592

ABSTRACT

BACKGROUND: Axonal degeneration and defects in neuromuscular neurotransmission represent a pathological hallmark in spinal muscular atrophy (SMA) and other forms of motoneuron disease. These pathological changes do not only base on altered axonal and presynaptic architecture, but also on alterations in dynamic movements of organelles and subcellular structures that are not necessarily reflected by static histopathological changes. The dynamic interplay between the axonal endoplasmic reticulum (ER) and ribosomes is essential for stimulus-induced local translation in motor axons and presynaptic terminals. However, it remains enigmatic whether the ER and ribosome crosstalk is impaired in the presynaptic compartment of motoneurons with Smn (survival of motor neuron) deficiency that could contribute to axonopathy and presynaptic dysfunction in SMA. METHODS: Using super-resolution microscopy, proximity ligation assay (PLA) and live imaging of cultured motoneurons from a mouse model of SMA, we investigated the dynamics of the axonal ER and ribosome distribution and activation. RESULTS: We observed that the dynamic remodeling of ER was impaired in axon terminals of Smn-deficient motoneurons. In addition, in axon terminals of Smn-deficient motoneurons, ribosomes failed to respond to the brain-derived neurotrophic factor stimulation, and did not undergo rapid association with the axonal ER in response to extracellular stimuli. CONCLUSIONS: These findings implicate impaired dynamic interplay between the ribosomes and ER in axon terminals of motoneurons as a contributor to the pathophysiology of SMA and possibly also other motoneuron diseases.


Subject(s)
Motor Neuron Disease , Muscular Atrophy, Spinal , Animals , Axons/pathology , Axons/physiology , Endoplasmic Reticulum , Mice , Motor Neuron Disease/pathology , Motor Neurons , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/pathology , Ribosomes
6.
Front Microbiol ; 11: 574, 2020.
Article in English | MEDLINE | ID: mdl-32318047

ABSTRACT

Super-resolution microscopy has evolved as a powerful method for subdiffraction-resolution fluorescence imaging of cells and cellular organelles, but requires sophisticated and expensive installations. Expansion microscopy (ExM), which is based on the physical expansion of the cellular structure of interest, provides a cheap alternative to bypass the diffraction limit and enable super-resolution imaging on a conventional fluorescence microscope. While ExM has shown impressive results for the magnified visualization of proteins and RNAs in cells and tissues, it has not yet been applied in fungi, mainly due to their complex cell wall. Here we developed a method that enables reliable isotropic expansion of ascomycetes and basidiomycetes upon treatment with cell wall degrading enzymes. Confocal laser scanning microscopy (CLSM) and structured illumination microscopy (SIM) images of 4.5-fold expanded sporidia of Ustilago maydis expressing fluorescent fungal rhodopsins and hyphae of Fusarium oxysporum or Aspergillus fumigatus expressing either histone H1-mCherry together with Lifeact-sGFP or mRFP targeted to mitochondria, revealed details of subcellular structures with an estimated spatial resolution of around 30 nm. ExM is thus well suited for cell biology studies in fungi on conventional fluorescence microscopes.

SELECTION OF CITATIONS
SEARCH DETAIL
...