Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38611979

ABSTRACT

To achieve better process control of silicon (Si) alloy production using aluminum as a reductant of calcium silicate (CaO-SiO2) slag, it is necessary to understand the reaction phenomena concerning the behavior of formed phases at the metal-slag interface during conversion. The interfacial interaction behavior of non-agitated melt was investigated using the sessile drop method for varying time and temperature, followed by EPMA phase analysis at the vicinity of the metal-slag interface. The most remarkable features of the reaction were the accumulation of solid calcium aluminate product layers at the Al alloy-slag interface and spontaneous emulsion of Si-alloy droplets in the slag phase. The reduction is strictly limited at 1550 °C due to the slow transfer of calcium aluminates away from the metal-slag interface into the partially liquid bulk slag. Reduction was significantly improved at 1600-1650 °C despite an interfacial layer being present, where the conversion rate is most intense in the first minutes of the liquid-liquid contact. A high mass transfer rate across the interface was shown related to the apparent interfacial tension depression of the wetting droplet along with a significant perturbed interface and emulsion due to Kelvin-Helmholtz instability driven by built-up interfacial charge at the interface. The increased reaction rate observed from 1550 °C to 1600-1650 °C for the non-agitated melt was attributed to the advantageous physical properties of the slag phase, which can be further regulated by the stoichiometry of metal-slag interactions and the composition of the slag.

2.
ACS Omega ; 8(20): 18116-18121, 2023 May 23.
Article in English | MEDLINE | ID: mdl-37251142

ABSTRACT

Coal tar pitch, a well-known source of polycyclic aromatic hydrocarbons (PAHs), is used as a binder of petroleum coke in prebaked anodes used for electrolysis of aluminum. Anodes are baked up to 1100 °C over a 20-day period, where flue gas containing PAHs and volatile organic compounds (VOCs) are treated using techniques such as regenerative thermal oxidation, quenching, and washing. Conditions during baking facilitate incomplete combustion of PAHs, and due to the various structures and properties of PAHs, the effect of temperature up to 750 °C and various atmospheres during pyrolysis and combustion were tested. PAH emissions from green anode paste (GAP) dominate in the temperature interval of 251-500 °C, where PAH species of 4-6 rings make up the majority of the emission profile. During pyrolysis in argon atmosphere, a total of 1645 µg EPA-16 PAHs are emitted per gram of GAP. Adding 5 and 10% CO2 to the inert atmosphere does not seem to affect the PAH emission level significantly, at 1547 and 1666 µg/g, respectively. When adding oxygen, concentrations decreased to 569 µg/g and 417 µg/g for 5% and 10% O2, respectively, corresponding to a 65% and 75% decrease in emission.

3.
NPJ Microgravity ; 8(1): 56, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36470890

ABSTRACT

Electrochemical energy conversion technologies play a crucial role in space missions, for example, in the Environmental Control and Life Support System (ECLSS) on the International Space Station (ISS). They are also vitally important for future long-term space travel for oxygen, fuel and chemical production, where a re-supply of resources from Earth is not possible. Here, we provide an overview of currently existing electrolytic energy conversion technologies for space applications such as proton exchange membrane (PEM) and alkaline electrolyzer systems. We discuss the governing interfacial processes in these devices influenced by reduced gravitation and provide an outlook on future applications of electrolysis systems in, e.g., in-situ resource utilization (ISRU) technologies. A perspective of computational modelling to predict the impact of the reduced gravitational environment on governing electrochemical processes is also discussed and experimental suggestions to better understand efficiency-impacting processes such as gas bubble formation and detachment in reduced gravitational environments are outlined.

4.
Membranes (Basel) ; 10(9)2020 Aug 29.
Article in English | MEDLINE | ID: mdl-32872394

ABSTRACT

Electrodialysis (ED) and reverse electrodialysis (RED) are enabling technologies which can facilitate renewable energy generation, dynamic energy storage, and hydrogen production from low-grade waste heat. This paper presents a computational fluid dynamics (CFD) study for maximizing the net produced power density of RED by coupling the Navier-Stokes and Nernst-Planck equations, using the OpenFOAM software. The relative influences of several parameters, such as flow velocities, membrane topology (i.e., flat or spacer-filled channels with different surface corrugation geometries), and temperature, on the resistivity, electrical potential, and power density are addressed by applying a factorial design and a parametric study. The results demonstrate that temperature is the most influential parameter on the net produced power density, resulting in a 43% increase in the net peak power density compared to the base case, for cylindrical corrugated channels.

SELECTION OF CITATIONS
SEARCH DETAIL
...