Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
World Allergy Organ J ; 12(1): 100006, 2019.
Article in English | MEDLINE | ID: mdl-30937131

ABSTRACT

BACKGROUND: Insects have become increasingly interesting as alternative nutrient sources for feeding humans and animals, most reasonably in processed form. Initially, some safety aspects - among them allergenicity - need to be addressed. OBJECTIVE: To reveal the cross-reactivity of shrimp-, mite- and flies-allergic patients to different edible insects, and further to assess the efficacy of food processing in reducing the recognition of insect proteins by patients' IgE and in skin prick testing of shrimp-allergic patients. METHODS: IgE from patients allergic to crustaceans, house dust mite or flies was evaluated for cross-recognition of proteins in house cricket Acheta domesticus (AD), desert locust Schistocerca gregaria (SG) and Yellow mealworm Tenebrio molitor (TM). Changes in IgE-binding and SPT-reactivity to processed insect extracts were determined for migratory locust (Locusta migratoria, LM), after different extraction methods, enzymatic hydrolysis, and thermal processing were applied. RESULTS: IgE from patients with crustacean-allergy shows cross-recognition of AD, SG and stable flies; house dust mite allergics' IgE binds to AD and SG; and the flies-allergic patient recognized cricket, desert locust and migratory locust. Cross-reactivity and allergenicity in SPT to LM can be deleted by conventional processing steps, such as hydrolysis with different enzymes or heat treatment, during the preparation of protein concentrates. CONCLUSION: The results show that crustacean-, HDM- and stable flies-allergic patients cross-recognize desert locust and house cricket proteins, and crustacean-allergic patients also flies proteins. Furthermore, this study shows that appropriate food processing methods can reduce the risk of cross-reactivity and allergenicity of edible insects.

2.
World Allergy Organ J ; 10(1): 23, 2017.
Article in English | MEDLINE | ID: mdl-28702111

ABSTRACT

BACKGROUND: Exposure to the house dust mite Dermatophagoides pteronyssinus (D.p.) increases the risk for developing allergic diseases in humans and their best friends, the dogs. Here, we explored whether this allergenic mite via its enzymes may impact the cutaneous extracellular matrix (ECM), which critically determines epithelial barrier integrity both structurally and functionally. METHODS: Two extracts obtained from either dust-purified or cultured D.p. bodies were used in the present study. To assess the potential impact of D.p. on protein components of the ECM, proteolytic activity of the D.p. extracts were determined by casein and gelatin gel zymography, and their N-acetyl-ß-hexosaminidase activity determined colorimetrically. In addition, IgE-dependent and innate degranulation potential of D.p. was examined in canine MPT-1 mast cells and neurite outgrowth assay using rat pheochromocytoma PC-12 cells. RESULTS: In gel zymography, both extracts digested the substrates casein and gelatin in a dose-dependent manner, especially at alkaline pH, and effective in a wide range of temperatures (30 °C-42 °C). In particular, a 25-kDa band corresponding to Der p 1, the major D.p. allergen for humans, was found enzymatically active in both casein and gelatin gels regardless of the presence of metal ions and of alkaline conditions. Besides protease activity, N-acetyl-ß-hexosaminidase activity was detected in both extracts, suggesting that D.p. affects the cutaneous ECM through deteriorating both proteins and glycosaminoglycans. While both D.p. extracts induced IgE-dependent mast cell degranulation, much less innate effects on mast- and neuronal cells were observed. CONCLUSIONS: Our data highlight that D.p. is a robust source of several distinct enzymes with protease- and N-acetyl-ß-hexosaminidase activities. In alkaline milieu they can degrade components of the ECM. Therefore, D.p. may contribute to epithelial barrier disruption especially when the skin surface pH is elevated.

3.
World Allergy Organ J ; 10(1): 42, 2017.
Article in English | MEDLINE | ID: mdl-29308109

ABSTRACT

Allergies need not only affect humans; this multifactorial and complex disease can also affect animals. Comparative allergology investigates the many similarities between the pathogenesis, clinics, diagnosis, and therapy of the disorders in humans and pet animals. In contrast to human allergy research, the veterinary field lacks access to a central database, which means there are no cohort studies published. This limits not only the research on breed and regional differences in allergies, but also further studies on the impact of gender in allergies of domestic animals. Moreover, domestic cats, dogs and male horses are castrated in most cases, which neutralises any effects of sexual hormones. In this review article a few interesting findings regarding gender aspects in companion animals were extracted from current literature. In summary, there is a lack of data on gender effects on allergies in cats, dogs or horses.

4.
EPMA J ; 6: 23, 2015.
Article in English | MEDLINE | ID: mdl-26617680

ABSTRACT

BACKGROUND: Classical methods of gene product analysis such as binding assays (e.g., ELISA, protein chip technology) are generally time-consuming, lab-intensive, less sensitive, and lack high-throughput capacity. In addition, all existing methods used to measure proteins necessitate multiple divisions of the original sample and individual tests carried out for each substance, with an associated cost for each test. METHOD: Together with a small biotech company, we developed a new and innovative analytical detection system based on homogenous time-resolved fluorescence (HTRF) technology. Our system facilitates the development of immune assays that measure selective different analytes such as selected biomarkers in a small sample volume at less than 20 min with a much higher sensitivity compared to common binding assay systems such as enzyme-linked immunosorbent assay (ELISA). Recent advances of the application of this novel detection system combine the power of miniaturization, microfluidics, better linear range, and faster quantification. RESULTS: The power of the HTRF technology offers great promise for point-of-care clinical testing and monitoring of many important analytes such as disease-specific biomarkers in the nanogram level in different human body fluids such as CSF, blood, serum, plasma, and saliva. The linear dynamical range of our HTRF assay was determined between 2.5 and 100 ng/mL. Precision and accuracy calculated for inter- as well as intra-assays was less than ± 10 %. Intra-assay and inter-assay precision for high, medium, and low analyte concentrations show mean CV values less than ± 10 %. Intra- and inter-assay accuracy for all three concentrations show mean recovery values of 80-120 %. CONCLUSION: The aim of this work is to describe the development and establishment of this novel HTRF system that allows the very fast detection and quantification of biomarkers in different human body fluids. Furthermore, a specific antibody combination that assures a specific binding of the correct refolded autoimmune IgG is evaluated.

5.
Clin Transl Allergy ; 5: 15, 2015.
Article in English | MEDLINE | ID: mdl-25852853

ABSTRACT

Both humans and their most important domestic animals harbor IgE and a similar IgE receptor repertoire and expression pattern. The same cell types are also involved in the triggering or regulation of allergies, such as mast cells, eosinophils or T-regulatory cells. Translational clinical studies in domestic animals could therefore help cure animal allergies and at the same time gather knowledge relevant to human patients. Dogs, cats and horses may spontaneously and to different extents develop immediate type symptoms to pollen allergens. The skin, nasal and bronchial reactions, as well as chronic skin lesions due to pollen are in principle comparable to human patients. Pollen of various species most often causes allergic rhinitis in human patients, whereas in dogs it elicits predominantly eczematous lesions (canine atopic dermatitis), in horses recurrent airway obstruction or hives as well as pruritic dermatitis, and in cats bronchial asthma and so-called cutaneous reactive patterns (eosinophilic granuloma complex, head and neck pruritus, symmetric self-induced alopecia). In human allergy-specific IgE detection, skin tests or other allergen provocation tests should be completed. In contrast, in animals IgE and dermal tests are regarded as equally important and may even replace each other. However, for practical and economic reasons intradermal tests are most commonly performed in a specialized practice. As in humans, in dogs, cats and horses allergen immunotherapy leads to significant improvement of the clinical symptoms. The collected evidence suggests that canines, felines and equines, with their spontaneous allergies, are attractive model patients for translational studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...