Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Aerosol Sci ; 99: 64-77, 2016 Sep.
Article in English | MEDLINE | ID: mdl-33311732

ABSTRACT

Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived respectively from computed tomography (CT) and µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditions using average species-specific minute volumes. Two different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the nasal sinus compared to the human at the same air concentration of anthrax spores. In contrast, higher spore deposition was predicted in the lower conducting airways of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology for deposition.

2.
Biomech Model Mechanobiol ; 13(4): 871-81, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24282079

ABSTRACT

A Fungean solid is derived for membranous materials as a body defined by isotropic response functions whose mathematical structure is that of a Hookean solid where the elastic constants are replaced by functions of state derived from an implicit, thermodynamic, internal energy function. The theory utilizes Biot's (Lond Edinb Dublin Philos Mag J Sci 27:468-489, 1939) definitions for stress and strain that, in one-dimension, are the stress/strain measures adopted by Fung (Am J Physiol 28:1532-1544, 1967) when he postulated what is now known as Fung's law. Our Fungean membrane model is parameterized against a biaxial data set acquired from a porcine pleural membrane subjected to three, sequential, proportional, planar extensions. These data support an isotropic/deviatoric split in the stress and strain-rate hypothesized by our theory. These data also demonstrate that the material response is highly nonlinear but, otherwise, mechanically isotropic. These data are described reasonably well by our otherwise simple, four-parameter, material model.


Subject(s)
Cell Membrane/pathology , Lung/pathology , Models, Cardiovascular , Swine/physiology , Algorithms , Animals , Elasticity , Models, Biological , Pleura/physiology , Stress, Mechanical , Tensile Strength , Thermodynamics
3.
J Comput Phys ; 2442013 Jul.
Article in English | MEDLINE | ID: mdl-24347680

ABSTRACT

In this study, we present a novel multiscale computational framework for efficiently linking multiple lower-dimensional models describing the distal lung mechanics to imaging-based 3D computational fluid dynamics (CFD) models of the upper pulmonary airways in order to incorporate physiologically appropriate outlet boundary conditions. The framework is an extension of the Modified Newton's Method with nonlinear Krylov accelerator developed by Carlson and Miller [1, 2, 3]. Our extensions include the retention of subspace information over multiple timesteps, and a special correction at the end of a timestep that allows for corrections to be accepted with verified low residual with as little as a single residual evaluation per timestep on average. In the case of a single residual evaluation per timestep, the method has zero additional computational cost compared to uncoupled or unidirectionally coupled simulations. We expect these enhancements to be generally applicable to other multiscale coupling applications where timestepping occurs. In addition we have developed a "pressure-drop" residual which allows for stable coupling of flows between a 3D incompressible CFD application and another (lower-dimensional) fluid system. We expect this residual to also be useful for coupling non-respiratory incompressible fluid applications, such as multiscale simulations involving blood flow. The lower-dimensional models that are considered in this study are sets of simple ordinary differential equations (ODEs) representing the compliant mechanics of symmetric human pulmonary airway trees. To validate the method, we compare the predictions of hybrid CFD-ODE models against an ODE-only model of pulmonary airflow in an idealized geometry. Subsequently, we couple multiple sets of ODEs describing the distal lung to an imaging-based human lung geometry. Boundary conditions in these models consist of atmospheric pressure at the mouth and intrapleural pressure applied to the multiple sets of ODEs. In both the simplified geometry and in the imaging-based geometry, the performance of the method was comparable to that of monolithic schemes, in most cases requiring only a single CFD evaluation per time step. Thus, this new accelerator allows us to begin combining pulmonary CFD models with lower-dimensional models of pulmonary mechanics with little computational overhead. Moreover, because the CFD and lower-dimensional models are totally separate, this framework affords great flexibility in terms of the type and breadth of the adopted lower-dimensional model, allowing the biomedical researcher to appropriately focus on model design. Research funded by the National Heart and Blood Institute Award 1RO1HL073598.

4.
Inhal Toxicol ; 21(6): 512-8, 2009 May.
Article in English | MEDLINE | ID: mdl-19519151

ABSTRACT

The percentages of total airflows over the nasal respiratory and olfactory epithelium of female rabbits were calculated from computational fluid dynamics (CFD) simulations of steady-state inhalation. These airflow calculations, along with nasal airway geometry determinations, are critical parameters for hybrid CFD/physiologically based pharmacokinetic models that describe the nasal dosimetry of water-soluble or reactive gases and vapors in rabbits. CFD simulations were based upon three-dimensional computational meshes derived from magnetic resonance images of three adult female New Zealand White (NZW) rabbits. In the anterior portion of the nose, the maxillary turbinates of rabbits are considerably more complex than comparable regions in rats, mice, monkeys, or humans. This leads to a greater surface area to volume ratio in this region and thus the potential for increased extraction of water soluble or reactive gases and vapors in the anterior portion of the nose compared to many other species. Although there was considerable interanimal variability in the fine structures of the nasal turbinates and airflows in the anterior portions of the nose, there was remarkable consistency between rabbits in the percentage of total inspired airflows that reached the ethmoid turbinate region (approximately 50%) that is presumably lined with olfactory epithelium. These latter results (airflows reaching the ethmoid turbinate region) were higher than previous published estimates for the male F344 rat (19%) and human (7%). These differences in regional airflows can have significant implications in interspecies extrapolations of nasal dosimetry.


Subject(s)
Magnetic Resonance Imaging/methods , Models, Biological , Nasal Cavity/physiology , Pulmonary Ventilation/physiology , Animals , Computational Biology/methods , Computer Simulation , Female , Inhalation Exposure/adverse effects , Inhalation Exposure/standards , Magnetic Resonance Imaging/standards , Maximal Expiratory Flow Rate/physiology , Nasal Cavity/anatomy & histology , Rabbits
5.
Comput Cardiol ; 36: 377-380, 2009 Sep.
Article in English | MEDLINE | ID: mdl-31527991

ABSTRACT

A critical challenge in biomechanical simulations is the spatial discretization of complex fluid-solid geometries created from imaging. This is especially important when dealing with Lagrangian interfaces, as there must be at a minimum both geometric and topological compatibility between fluid and solid phases, with exact matching of the interfacial nodes being highly desirable. We have developed a solution to this problem and applied the approach to the creation of a 3D fluid-solid mesh of the mouse heart. First, a 50 micron isotropic MRI dataset of a perfusion-fixed mouse heart was segmented into blood, tissue, and background using a customized multimaterial connected fuzzy thresholding algorithm. Then, a multimaterial marching cubes algorithm was applied to produce two compatible isosurfaces, one for the blood-tissue boundary and one for the tissue-background boundary. A multimaterial smoothing algorithm that rigorously conserves volume for each phase simultaneously smoothed the isosurfaces. Next we applied novel automated meshing algorithms to generate anisotropic hybrid meshes with the number of layers and the desired element anisotropy for each material as the only input parameters. As the meshes are scale-invariant within a material and include boundary layer prisms, fluid-structure interaction computations would have a relative error equilibrated over the entire mesh. The resulting model is highly detailed mesh representation of the mouse heart, including features such as chordae and coronary vasculature, that is also maximally efficient to produce the best simulation results for the computational resources available.

6.
Philos Trans R Soc Lond B Biol Sci ; 362(1484): 1393-406, 2007 Aug 29.
Article in English | MEDLINE | ID: mdl-17581809

ABSTRACT

Successful mitral valve repair is dependent upon a full understanding of normal and abnormal mitral valve anatomy and function. Computational analysis is one such method that can be applied to simulate mitral valve function in order to analyse the roles of individual components and evaluate proposed surgical repair. We developed the first three-dimensional finite element computer model of the mitral valve including leaflets and chordae tendineae; however, one critical aspect that has been missing until the last few years was the evaluation of fluid flow, as coupled to the function of the mitral valve structure. We present here our latest results for normal function and specific pathological changes using a fluid-structure interaction model. Normal valve function was first assessed, followed by pathological material changes in collagen fibre volume fraction, fibre stiffness, fibre splay and isotropic stiffness. Leaflet and chordal stress and strain and papillary muscle force were determined. In addition, transmitral flow, time to leaflet closure and heart valve sound were assessed. Model predictions in the normal state agreed well with a wide range of available in vivo and in vitro data. Further, pathological material changes that preserved the anisotropy of the valve leaflets were found to preserve valve function. By contrast, material changes that altered the anisotropy of the valve were found to profoundly alter valve function. The addition of blood flow and an experimentally driven microstructural description of mitral tissue represent significant advances in computational studies of the mitral valve, which allow further insight to be gained. This work is another building block in the foundation of a computational framework to aid in the refinement and development of a truly non-invasive diagnostic evaluation of the mitral valve. Ultimately, it represents the basis for simulation of surgical repair of pathological valves in a clinical and educational setting.


Subject(s)
Mitral Valve/pathology , Mitral Valve/physiology , Models, Biological , Algorithms , Biomechanical Phenomena , Blood Circulation , Collagen/physiology , Computer Simulation , Elastic Tissue
7.
Article in English | MEDLINE | ID: mdl-17282173

ABSTRACT

The objective of this study was to simulate clamping of the aorta. It is computationally demanding and involves contact between clamp and aorta, large deformations, and fluid-structure interactions (FSI). Models of the aortic root and clamp were created and solve in ADINA, a Finite Element Analysis package. The tissue model was created using a non-linear material. Fluid-structure interactions (FSI) were modeled. The deformation profile of the simulated aorta matched well with that of the real tissue. Clamping of a fluid-filled pressurized aorta, an important first step towards simulating of surgical procedures, was successfully modeled. The simulation was validated by clamping experiments. The modeling techniques developed are also applicable to pre-operative planning of cardiovascular surgery.

8.
Med Biol Eng Comput ; 42(6): 832-46, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15587476

ABSTRACT

Automatic acoustic classification and diagnosis of mitral valve disease remain outstanding biomedical problems. Although considerable attention has been given to the evolution of signal processing techniques, the mechanics of the first heart sound generation has been largely overlooked. In this study, the haemodynamic determinants of the first heart sound were examined in a computational model. Specifically, the relationship of the transvalvular pressure and its maximum derivative to the time-frequency content of the acoustic pressure was examined. To model the transient vibrations of the mitral valve apparatus bathed in a blood medium, a dynamic, non-linear, fluid-coupled finite element model of the mitral valve leaflets and chordae tendinae was constructed. It was found that the root mean squared (RMS) acoustic pressure varied linearly (r2= 0.99) from 0.010 to 0.259 mmHg, following an increase in maximum dP/dt from 415 to 12470 mm Hg s(-1). Over that same range, peak frequency varied non-linearly from 59.6 to 88.1 Hz. An increase in left-ventricular pressure at coaptation from 22.5 to 58.5mm Hg resulted in a linear (r2= 0.91) rise in RMS acoustic pressure from 0.017 to 1.41mm Hg. This rise in transmitral pressure was accompanied by a non-linear rise in peak frequency from 63.5 to 74.1 Hz. The relationship between the transvalvular pressure and its derivative and the time-frequency content of the first heart sound has been examined comprehensively in a computational model for the first time. Results suggest that classification schemes should embed both of these variables for more accurate classification.


Subject(s)
Heart Sounds/physiology , Hemodynamics/physiology , Mitral Valve/physiology , Acoustics , Animals , Blood Flow Velocity/physiology , Chordae Tendineae/physiology , Computer Simulation , Finite Element Analysis , Models, Cardiovascular , Papillary Muscles/physiology , Pressure , Reproducibility of Results , Swine , Time Factors , Ventricular Function, Left/physiology
9.
Comput Methods Biomech Biomed Engin ; 6(1): 33-44, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12623436

ABSTRACT

We present a novel method for the implementation of hyperelastic finite strain, non-linear strain-energy functions for biological membranes in an explicit finite element environment. The technique is implemented in LS-DYNA but may also be implemented in any suitable non-linear explicit code. The constitutive equations are implemented on the foundation of a co-rotational uniformly reduced Hughes-Liu shell. This shell is based on an updated-Lagrangian formulation suitable for relating Cauchy stress to the rate-of-deformation, i.e. hypo-elasticity. To accommodate finite deformation hyper-elastic formulations, a co-rotational deformation gradient is assembled over time, resulting in a formulation suitable for pseudo-hyperelastic constitutive equations that are standard assumptions in biomechanics. Our method was validated by comparison with (1) an analytic solution to a spherically-symmetric dynamic membrane inflation problem, incorporating a Mooney-Rivlin hyperelastic equation and (2) with previously published finite element solutions to a non-linear transversely isotropic inflation problem. Finally, we implemented a transversely isotropic strain-energy function for mitral valve tissue. The method is simple and accurate and is believed to be generally useful for anyone who wishes to model biologic membranes with an experimentally driven strain-energy function.


Subject(s)
Cell Membrane/physiology , Connective Tissue/physiology , Membranes/physiology , Models, Biological , Nonlinear Dynamics , Animals , Anisotropy , Computer Simulation , Elasticity , Energy Transfer , Finite Element Analysis , Mitral Valve/physiology , Models, Cardiovascular , Motion , Reproducibility of Results , Sensitivity and Specificity , Stress, Mechanical , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...