Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 32(48): 5458-70, 2013 Nov 28.
Article in English | MEDLINE | ID: mdl-23435420

ABSTRACT

BALB/c mice heterozygous for Trp53 develop a high proportion of spontaneous mammary tumors, a phenotype distinct from other mouse strains. BALB/c-Trp53+/- female mice, thus, resemble the hereditary Li-Fraumeni syndrome (LFS) characterized by early-onset of breast cancer, even though LFS involves TP53 mutations, which may involve not only loss- but also gain-of-function. Previous analysis of tumors in BALB/c-Trp53+/- females showed frequent loss of heterozygosity involving the wild-type allele of Trp53 and displayed characteristics indicative of mitotic recombination. Critical involvement of DNA double-strand break (DSB) repair dysfunction, particularly of homologous recombination (HR), was also noticed in the etiology of human breast cancer. To better define functional alterations in BALB/c-Trp53+/- mice, we applied a fluorescence-based DSB repair assay on mouse embryonic fibroblasts (MEFs) from BALB/c-Trp53+/- versus C57BL/6J-Trp53+/- mice. This approach revealed deregulation of HR but not non-homologous end-joining (NHEJ) in BALB/c-Trp53+/-, which was further confirmed for mammary epithelial cells. Screening of a small interfering RNA-library targeting DSB repair, recombination, replication and signaling genes, identified 25 genes causing differences between homologous DSB repair in the two strains upon silencing. Interactome analysis of the hits revealed clustering of replication-related and fanconi anemia (FA)/breast cancer susceptibility (BRCA) genes. Further dissection of the functional change in BALB/c-Trp53+/- by immunofluorescence microscopy of nuclear 53BP1, Replication protein A (RPA) and Rad51 foci uncovered differences in crosslink and replication-associated repair. Chromosome breakage, G2 arrest and biochemical analyses indicated a FA pathway defect downstream of FancD2 associated with reduced levels of BRCA2. Consistent with polygenic models for BRCA, mammary carcinogenesis in BALB/c-Trp53+/- mice may, therefore, be promoted by a BRCA modifier allele in the FA pathway in the context of partial p53 loss-of-function.


Subject(s)
Disease Resistance/genetics , Fanconi Anemia/genetics , Genetic Predisposition to Disease/genetics , Mammary Neoplasms, Experimental/genetics , RNA, Small Interfering/genetics , Signal Transduction/genetics , Tumor Suppressor Protein p53/deficiency , Animals , Cell Line, Tumor , Computational Biology , DNA Breaks, Double-Stranded , DNA Repair/genetics , Fanconi Anemia/pathology , Humans , Mammary Neoplasms, Experimental/pathology , Mice, Inbred BALB C , Mice, Inbred C57BL , Species Specificity , Tumor Suppressor Protein p53/metabolism
2.
Mol Syndromol ; 3(3): 120-130, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23112754

ABSTRACT

Concurrent emergence of nephroblastoma (Wilms Tumor; WT) and neuroblastoma (NB) is rare and mostly observed in patients with severe subtypes of Fanconi anemia (FA) with or without VACTER-L association (VL). We investigated the hypothesis that early consequences of genomic instability result in shared regions with copy number variation in different precursor cells that originate distinct embryonal tumors. We observed a newborn girl with FA and VL (aplasia of the thumbs, cloacal atresia (urogenital sinus), tethered cord at L3/L4, muscular ventricular septum defect, and horseshoe-kidney with a single ureter) who simultaneously acquired an epithelial-type WT in the left portion of the kidney and a poorly differentiated adrenal NB in infancy. A novel homozygous germline frameshift mutation in PALB2 (c.1676_c1677delAAinsG) leading to protein truncation (pGln526ArgfsX1) inherited from consanguineous parents formed the genetic basis of FA-N. Spontaneous and induced chromosomal instability was detected in the majority of cells analyzed from peripheral lymphocytes, bone marrow, and cultured fibroblasts. Bone marrow cells also showed complex chromosome rearrangements consistent with the myelodysplastic syndrome at 11 months of age. Array-comparative genomic hybridization analyses of both WT and NB showed shared gains or amplifications within the chromosomal regions 11p15.5 and 17q21.31-q25.3, including genes that are reportedly implicated in tumor development such as IGF2, H19, WT2, BIRC5, and HRAS.

SELECTION OF CITATIONS
SEARCH DETAIL
...