Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem J ; 360(Pt 3): 727-36, 2001 Dec 15.
Article in English | MEDLINE | ID: mdl-11736665

ABSTRACT

Fungal trehalose phosphorylase is classified as a family 4 glucosyltransferase that catalyses the reversible phosphorolysis of alpha,alpha-trehalose with net retention of anomeric configuration. Glucosyl transfer to and from phosphate takes place by the partly rate-limiting interconversion of ternary enzyme-substrate complexes formed from binary enzyme-phosphate and enzyme-alpha-d-glucopyranosyl phosphate adducts respectively. To advance a model of the chemical mechanism of trehalose phosphorylase, we performed a steady-state kinetic study with the purified enzyme from the basidiomycete fungus Schizophyllum commune by using alternative substrates, inhibitors and combinations thereof in pairs as specific probes of substrate-binding recognition and transition-state structure. Orthovanadate is a competitive inhibitor against phosphate and alpha-d-glucopyranosyl phosphate, and binds 3 x 10(4)-fold tighter (K(i) approximately 1 microM) than phosphate. Structural alterations of d-glucose at C-2 and O-5 are tolerated by the enzyme at subsite +1. They lead to parallel effects of approximately the same magnitude (slope=1.14; r(2)=0.98) on the reciprocal catalytic efficiency for reverse glucosyl transfer [log (K(m)/k(cat))] and the apparent affinity of orthovanadate determined in the presence of the respective glucosyl acceptor (log K(i)). An adduct of orthovanadate and the nucleophile/leaving group bound at subsite +1 is therefore the true inhibitor and displays partial transition state analogy. Isofagomine binds to subsite -1 in the enzyme-phosphate complex with a dissociation constant of 56 microM and inhibits trehalose phosphorylase at least 20-fold better than 1-deoxynojirimycin. The specificity of the reversible azasugars inhibitors would be explained if a positive charge developed on C-1 rather than O-5 in the proposed glucosyl cation-like transition state of the reaction. The results are discussed in the context of alpha-retaining glucosyltransferase mechanisms that occur with and without a beta-glucosyl enzyme intermediate.


Subject(s)
Glucose/metabolism , Glucosyltransferases/metabolism , Schizophyllum/enzymology , Binding Sites , Enzyme Inhibitors/pharmacology , Glucosyltransferases/antagonists & inhibitors , Glycosylation , Kinetics , Substrate Specificity , Vanadates/pharmacology
2.
Biochem J ; 356(Pt 3): 757-67, 2001 Jun 15.
Article in English | MEDLINE | ID: mdl-11389683

ABSTRACT

Initial-velocity measurements for the phospholysis and synthesis of alpha,alpha-trehalose catalysed by trehalose phosphorylase from Schizophyllum commune and product and dead-end inhibitor studies show that this enzyme has an ordered Bi Bi kinetic mechanism, in which phosphate binds before alpha,alpha-trehalose, and alpha-D-glucose is released before alpha-D-glucose 1-phosphate. The free-energy profile for the enzymic reaction at physiological reactant concentrations displays its largest barriers for steps involved in reverse glucosyl transfer to D-glucose, and reveals the direction of phospholysis to be favoured thermodynamically. The pH dependence of kinetic parameters for all substrates and the dissociation constant of D-glucal, a competitive dead-end inhibitor against D-glucose (K(i)=0.3 mM at pH 6.6 and 30 degrees C), were determined. Maximum velocities and catalytic efficiencies for the forward and reverse reactions decrease at high and low pH, giving apparent pK values of 7.2--7.8 and 5.5--6.0 for two groups whose correct protonation state is required for catalysis. The pH dependences of k(cat)/K are interpreted in terms of monoanionic phosphate and alpha-D-glucose 1-phosphate being the substrates, and of the pK value seen at high pH corresponding to the phosphate group in solution or bound to the enzyme. The K(i) value for the inhibitor decreases outside the optimum pH range for catalysis, indicating that binding of D-glucal is tighter with incorrectly ionized forms of the complex between the enzyme and alpha-D-glucose 1-phosphate. Each molecule of trehalose phosphorylase contains one Mg(2+) that is non-dissociable in the presence of metal chelators. Measurements of the (26)Mg(2+)/(24)Mg(2+) ratio in the solvent and on the enzyme by using inductively coupled plasma MS show that exchange of metal ion between protein and solution does not occur at measurable rates. Tryptic peptide mass mapping reveals close structural similarity between trehalose phosphorylases from basidiomycete fungi.


Subject(s)
Basidiomycota/enzymology , Glucosyltransferases/metabolism , Amino Acid Sequence , Glucosyltransferases/chemistry , Hydrogen-Ion Concentration , Kinetics , Metals/metabolism , Molecular Sequence Data , Peptide Mapping , Protein Conformation , Thermodynamics
3.
Biochem J ; 351 Pt 3: 649-59, 2000 Nov 01.
Article in English | MEDLINE | ID: mdl-11042119

ABSTRACT

Steady-state kinetic studies of the enzymic glucosyl transfer to and from phosphate catalysed by cellobiose phosphorylase from Cellulomonas uda have shown that this enzyme operates by a ternary-complex kinetic mechanism in which beta-cellobiose binds before phosphate, and beta-D-glucose and alpha-D-glucopyranosyl phosphate are released in that order. alpha-D-Glucopyranosyl fluoride (but not beta-D-glucopyranosyl fluoride) serves as alternative glucosyl donor for beta-cellobiose synthesis with a specificity constant that is one-ninth that of the corresponding enzymic reaction with alpha-D-glucopyranosyl phosphate (approximately 20000 M(-1).s(-1) at 30 degrees C). The kinetic parameters for a complete series of deoxy and deoxyfluoro analogues of D-glucose have been determined and the data yield estimates of the net strengths of hydrogen-bonding interactions with the non-reacting hydroxy groups of D-glucose at the transition state (0.8-4.0 kcal/mol, where 1 cal identical with 4.184 J) and enable the prediction of the polarities of these hydrogen bonds. Each hydroxy group functions as donor of a hydrogen for bonding to probably a charged (at 3-OH) or neutral (at 2-OH and 6-OH) acceptor group on the enzyme. The equatorial 1-OH is essential for enzyme activity. Derivatives of D-glucose in which the 1-OH or the reacting 4-OH were replaced by hydrogen or fluorine have been tested as inhibitors to measure their affinities for the sugar-binding subsite +1 (numbered from the bond-cleaving/forming site). The data show that hydrogen-bonding interactions between the 1-OH and 4-OH and charged groups on the enzyme stabilize the ground-state ternary complex of the enzymic synthesis of beta-cellobiose by 2.3 and 0.4 kcal/mol, respectively, and assist the precise positioning of beta-D-glucose for catalysis.


Subject(s)
Actinomycetales/enzymology , Glucosyltransferases/metabolism , Carbohydrate Conformation , Carbohydrate Metabolism , Carbohydrate Sequence , Carbohydrates/chemistry , Catalysis , Kinetics , Stereoisomerism , Substrate Specificity
4.
Biochem J ; 341 ( Pt 2): 385-93, 1999 Jul 15.
Article in English | MEDLINE | ID: mdl-10393097

ABSTRACT

During growth on d-glucose, the basidiomycete Schizophyllum commune produces an intracellular alpha,alpha-trehalose phosphorylase. Specific phosphorylase activity increases steadily during the exponential growth phase, up to a maximum of approx. 0.08 unit/mg of protein, and decreases after the available d-glucose in the medium has been fully depleted. The variation with time of the concentrations of intracellular alpha,alpha-trehalose and Pi is reciprocal to that of trehalose phosphorylase activity, indicating that the enzyme makes temporary use of the pool of alpha, alpha-trehalose (approx. 0.42 mmol/g dry cell) via phosphorolysis. The enzyme has been purified, 150-fold, to homogeneity in 55% yield and characterized. It is a monomeric 61 kDa protein, which seems to lack regulation at the level of enzyme activity. The enzyme catalyses the reversible phosphorolysis of alpha,alpha-trehalose into alpha-d-glucose 1-phosphate and alpha-d-glucose in the absence of cofactors, with a catalytic-centre activity at 30 degrees C of 14 s(-1). Double-reciprocal analysis of the initial velocities for trehalose phosphorolysis and synthesis yields intersecting patterns, and no exchange reaction occurs between alpha-d-glucose 1-phosphate and the phosphate analogue arsenate. Therefore trehalose phosphorylase operates by a ternary-complex, rather than a Ping-Pong, kinetic mechanism. The specificity constants (kcat/Km) of phosphate (6000 M(-1).s(-1)) and alpha-d-glucose 1-phosphate (3500 M(-1).s(-1)) compared with those of alpha,alpha-trehalose (161 M(-1).s(-1)) and d-glucose (260 M(-1).s(-1)), together with the inhibition by NaCl, which is competitive with respect to phosphate with a Ki of 67 mM, suggest an important role for ionic enzyme-phosphate interactions in the catalytic mechanism of trehalose phosphorylase. The isolated enzyme requires alpha,alpha-trehalose (0.1-0.3 M) for its conformational stability.


Subject(s)
Fungal Proteins/analysis , Glucosyltransferases/analysis , Schizophyllum/enzymology , Enzyme Stability , Fungal Proteins/isolation & purification , Fungal Proteins/metabolism , Glucosyltransferases/isolation & purification , Glucosyltransferases/metabolism , Kinetics , Substrate Specificity
5.
FEBS Lett ; 440(3): 440-3, 1998 Dec 04.
Article in English | MEDLINE | ID: mdl-9872418

ABSTRACT

Phosphorolysis of alpha,alpha-trehalose catalyzed by trehalose phosphorylase from the basidiomycete Schizophyllum commune proceeds via net retention of anomeric configuration and yields alpha-D-glucose 1-phosphate and alpha-D-glucose as the products. In reverse reaction, only the alpha-anomers of D-glucose 1-phosphate and D-glucose are utilized as glucosyl donor and acceptor, respectively, and give exclusively the alpha,alpha-product. Trehalose phosphorylase converts alpha-D-glucose 1-fluoride and phosphate into alpha-D-glucose 1-phosphate, a reaction requiring the stereospecific protonation of the glucosyl fluoride by a Brønsted acid. The results are discussed with regard to a plausible reaction mechanism of fungal trehalose phosphorylase.


Subject(s)
Glucosyltransferases/metabolism , Schizophyllum/enzymology , Glucose/analogs & derivatives , Glucose/metabolism , Glucosyltransferases/chemistry , Glucosyltransferases/isolation & purification , Schizophyllum/metabolism , Stereoisomerism , Substrate Specificity , Time Factors
6.
J Biotechnol ; 58(3): 157-66, 1997 Dec 03.
Article in English | MEDLINE | ID: mdl-9470221

ABSTRACT

Downstream processing by biospecific chromatography of maltodextrin phosphorylase from Escherichia coli, overexpressed in E. coli, was substantially improved by a novel approach using ceramic hydroxyapatite. Wild-type and a less active mutant enzyme were purified from crude bacterial cell extracts in one efficient separation step that yielded phosphorylase in purity > 95% in at least 90% recoveries. At pH 6.9 and 25 degrees C, wild-type and mutant phosphorylases eluted from the hydroxyapatite column at a phosphate concentration of 0.4 M whereas calcium ions failed to displace the enzymes. The dynamic capacity for phosphorylase binding in the presence of bulk proteins was approximately 3 mg enzyme ml-1 matrix. The interaction of E. coli phosphorylase with hydroxyapatite seems to be mediated by surface amino groups, so that the bound enzyme retained almost full catalytic activity. Compared to the soluble enzyme, immobilization onto hydroxyapatite resulted in a more than 30-fold stabilization of wild-type phosphorylase against thermal and proteolytic inactivation and thus could improve the operational stability of phosphorylase during conversion of polysaccharide to glucose 1-phosphate.


Subject(s)
Escherichia coli/enzymology , Glucosyltransferases/isolation & purification , Chromatography/methods , Durapatite/metabolism , Endopeptidase K/metabolism , Enzyme Stability , Enzymes, Immobilized/metabolism , Glucosyltransferases/genetics , Molecular Weight , Mutagenesis/genetics , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...