Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 4611, 2021 07 29.
Article in English | MEDLINE | ID: mdl-34326333

ABSTRACT

Hedgehog signaling is essential for bone formation, including functioning as a means for the growth plate to drive skeletal mineralization. However, the mechanisms regulating hedgehog signaling specifically in bone-forming osteoblasts are largely unknown. Here, we identified SLIT and NTRK-like protein-5(Slitrk5), a transmembrane protein with few identified functions, as a negative regulator of hedgehog signaling in osteoblasts. Slitrk5 is selectively expressed in osteoblasts and loss of Slitrk5 enhanced osteoblast differentiation in vitro and in vivo. Loss of SLITRK5 in vitro leads to increased hedgehog signaling and overexpression of SLITRK5 in osteoblasts inhibits the induction of targets downstream of hedgehog signaling. Mechanistically, SLITRK5 binds to hedgehog ligands via its extracellular domain and interacts with PTCH1 via its intracellular domain. SLITRK5 is present in the primary cilium, and loss of SLITRK5 enhances SMO ciliary enrichment upon SHH stimulation. Thus, SLITRK5 is a negative regulator of hedgehog signaling in osteoblasts that may be attractive as a therapeutic target to enhance bone formation.


Subject(s)
Cilia/metabolism , Hedgehog Proteins/metabolism , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Osteoblasts/metabolism , Osteogenesis/physiology , Patched-1 Receptor/metabolism , Animals , Cell Differentiation , Cells, Cultured , Hedgehog Proteins/genetics , Humans , Membrane Proteins/genetics , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Osteoblasts/cytology , Patched-1 Receptor/genetics , Signal Transduction
2.
Nat Commun ; 11(1): 5704, 2020 11 11.
Article in English | MEDLINE | ID: mdl-33177525

ABSTRACT

Neurofibromatosis type I (NF1) is characterized by prominent skeletal manifestations caused by NF1 loss. While inhibitors of the ERK activating kinases MEK1/2 are promising as a means to treat NF1, the broad blockade of the ERK pathway produced by this strategy is potentially associated with therapy limiting toxicities. Here, we have sought targets offering a more narrow inhibition of ERK activation downstream of NF1 loss in the skeleton, finding that MEKK2 is a novel component of a noncanonical ERK pathway in osteoblasts that mediates aberrant ERK activation after NF1 loss. Accordingly, despite mice with conditional deletion of Nf1 in mature osteoblasts (Nf1fl/fl;Dmp1-Cre) and Mekk2-/- each displaying skeletal defects, Nf1fl/fl;Mekk2-/-;Dmp1-Cre mice show an amelioration of NF1-associated phenotypes. We also provide proof-of-principle that FDA-approved inhibitors with activity against MEKK2 can ameliorate NF1 skeletal pathology. Thus, MEKK2 functions as a MAP3K in the ERK pathway in osteoblasts, offering a potential new therapeutic strategy for the treatment of NF1.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/metabolism , Imidazoles/pharmacology , MAP Kinase Kinase Kinase 2/metabolism , Neurofibromatosis 1/etiology , Pyridazines/pharmacology , Animals , Disease Models, Animal , Enzyme Activation , Extracellular Matrix Proteins/genetics , Female , Humans , MAP Kinase Kinase Kinase 2/antagonists & inhibitors , MAP Kinase Kinase Kinase 2/genetics , Male , Mice, Transgenic , Neurofibromatosis 1/drug therapy , Neurofibromin 1/genetics , Neurofibromin 1/metabolism , Osteoblasts/metabolism , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Skull/cytology
3.
Nature ; 562(7725): 133-139, 2018 10.
Article in English | MEDLINE | ID: mdl-30250253

ABSTRACT

Bone consists of separate inner endosteal and outer periosteal compartments, each with distinct contributions to bone physiology and each maintaining separate pools of cells owing to physical separation by the bone cortex. The skeletal stem cell that gives rise to endosteal osteoblasts has been extensively studied; however, the identity of periosteal stem cells remains unclear1-5. Here we identify a periosteal stem cell (PSC) that is present in the long bones and calvarium of mice, displays clonal multipotency and self-renewal, and sits at the apex of a differentiation hierarchy. Single-cell and bulk transcriptional profiling show that PSCs display transcriptional signatures that are distinct from those of other skeletal stem cells and mature mesenchymal cells. Whereas other skeletal stem cells form bone via an initial cartilage template using the endochondral pathway4, PSCs form bone via a direct intramembranous route, providing a cellular basis for the divergence between intramembranous versus endochondral developmental pathways. However, there is plasticity in this division, as PSCs acquire endochondral bone formation capacity in response to injury. Genetic blockade of the ability of PSCs to give rise to bone-forming osteoblasts results in selective impairments in cortical bone architecture and defects in fracture healing. A cell analogous to mouse PSCs is present in the human periosteum, raising the possibility that PSCs are attractive targets for drug and cellular therapy for skeletal disorders. The identification of PSCs provides evidence that bone contains multiple pools of stem cells, each with distinct physiologic functions.


Subject(s)
Bone Development , Bone and Bones/cytology , Periosteum/cytology , Stem Cells/cytology , Animals , Cathepsin K/metabolism , Cell Differentiation , Female , Femur/cytology , Fracture Healing , Gene Expression Regulation , Humans , Male , Mesenchymal Stem Cells/cytology , Mice , Osteoblasts/cytology , Skull/cytology
4.
J Bone Miner Res ; 32(9): 1811-1815, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28561373

ABSTRACT

The c-Jun N-terminal kinases (JNKs) are ancient and evolutionarily conserved regulators of proliferation, differentiation, and cell death responses. Currently, in vitro studies offer conflicting data about whether the JNK pathway augments or represses osteoblast differentiation, and the contribution of the JNK pathway to regulation of bone mass in vivo remains unclear. Here we show that Jnk1-/- mice display severe osteopenia due to impaired bone formation, whereas Jnk2-/- mice display a mild osteopenia only evident in long bones. In order to both confirm that these effects were osteoblast intrinsic and assess whether redundancy with JNK1 masks a potential contribution of JNK2, mice with a conditional deletion of both JNK1 and JNK2 floxed conditional alleles in osteoblasts (Jnk1-2osx ) were bred. These mice displayed a similar degree of osteopenia to Jnk1-/- mice due to decreased bone formation. In vitro, Jnk1-/- osteoblasts display a selective defect in the late stages of osteoblast differentiation with impaired mineralization activity. Downstream of JNK1, phosphorylation of JUN is impaired in Jnk1-/- osteoblasts. Transcriptome analysis showed that JNK1 is required for upregulation of several osteoblast-derived proangiogenic factors such as IGF2 and VEGFa. Accordingly, JNK1 deletion results in a significant reduction skeletal vasculature in mice. Taken together, this study establishes that JNK1 is a key mediator of osteoblast function in vivo and in vitro. © 2017 American Society for Bone and Mineral Research.


Subject(s)
Bone Diseases, Metabolic/enzymology , Mitogen-Activated Protein Kinase 8/metabolism , Osteoblasts/enzymology , Osteogenesis , Animals , Bone Diseases, Metabolic/genetics , Bone Diseases, Metabolic/pathology , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism , Mice , Mice, Knockout , Mitogen-Activated Protein Kinase 8/genetics , Osteoblasts/pathology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...