Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 270, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191555

ABSTRACT

Many genes that drive normal cellular development also contribute to oncogenesis. Medulloblastoma (MB) tumors likely arise from neuronal progenitors in the cerebellum, and we hypothesized that the heterogeneity observed in MBs with sonic hedgehog (SHH) activation could be due to differences in developmental pathways. To investigate this question, here we perform single-nucleus RNA sequencing on highly differentiated SHH MBs with extensively nodular histology and observed malignant cells resembling each stage of canonical granule neuron development. Through innovative computational approaches, we connect these results to published datasets and find that some established molecular subtypes of SHH MB appear arrested at different developmental stages. Additionally, using multiplexed proteomic imaging and MALDI imaging mass spectrometry, we identify distinct histological and metabolic profiles for highly differentiated tumors. Our approaches are applicable to understanding the interplay between heterogeneity and differentiation in other cancers and can provide important insights for the design of targeted therapies.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Humans , Hedgehog Proteins/genetics , Medulloblastoma/genetics , Proteomics , Cerebellum , Cerebellar Neoplasms/genetics
2.
Acta Neuropathol Commun ; 11(1): 203, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38115140

ABSTRACT

The prognosis of childhood medulloblastoma (MB) is often poor, and it usually requires aggressive therapy that adversely affects quality of life. microRNA-211 (miR-211) was previously identified as an important regulator of cells that descend from neural cells. Since medulloblastomas primarily affect cells with similar ontogeny, we investigated the role and mechanism of miR-211 in MB. Here we showed that miR-211 expression was highly downregulated in cell lines, PDXs, and clinical samples of different MB subgroups (SHH, Group 3, and Group 4) compared to normal cerebellum. miR-211 gene was ectopically expressed in transgenic cells from MB subgroups, and they were subjected to molecular and phenotypic investigations. Monoclonal cells stably expressing miR-211 were injected into the mouse cerebellum. miR-211 forced expression acts as a tumor suppressor in MB both in vitro and in vivo, attenuating growth, promoting apoptosis, and inhibiting invasion. In support of emerging regulatory roles of metabolism in various forms of cancer, we identified the acyl-CoA synthetase long-chain family member (ACSL4) as a direct miR-211 target. Furthermore, lipid nanoparticle-coated, dendrimer-coated, and cerium oxide-coated miR-211 nanoparticles were applied to deliver synthetic miR-211 into MB cell lines and cellular responses were assayed. Synthesizing nanoparticle-miR-211 conjugates can suppress MB cell viability and invasion in vitro. Our findings reveal miR-211 as a tumor suppressor and a potential therapeutic agent in MB. This proof-of-concept paves the way for further pre-clinical and clinical development.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , MicroRNAs , Animals , Humans , Mice , Cell Line, Tumor , Cell Proliferation , Cerebellar Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Homeostasis , Ligases/genetics , Ligases/metabolism , Medulloblastoma/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Quality of Life
3.
Clin Cancer Res ; 28(24): 5419-5430, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36239623

ABSTRACT

PURPOSE: Oncolytic virotherapy with herpes simplex virus-1 (HSV) has shown promise for the treatment of pediatric and adult brain tumors; however, completed and ongoing clinical trials have utilized intratumoral/peritumoral oncolytic HSV (oHSV) inoculation due to intraventricular/intrathecal toxicity concerns. Intratumoral delivery requires an invasive neurosurgical procedure, limits repeat injections, and precludes direct targeting of metastatic and leptomeningeal disease. To address these limitations, we determined causes of toxicity from intraventricular oHSV and established methods for mitigating toxicity to treat disseminated brain tumors in mice. EXPERIMENTAL DESIGN: HSV-sensitive CBA/J mice received intraventricular vehicle, inactivated oHSV, or treatment doses (1×107 plaque-forming units) of oHSV, and toxicity was assessed by weight loss and IHC. Protective strategies to reduce oHSV toxicity, including intraventricular low-dose oHSV or interferon inducer polyinosinic-polycytidylic acid (poly I:C) prior to oHSV treatment dose, were evaluated and then utilized to assess intraventricular oHSV treatment of multiple models of disseminated CNS disease. RESULTS: A standard treatment dose of intraventricular oHSV damaged ependymal cells via virus replication and induction of CD8+ T cells, whereas vehicle or inactivated virus resulted in no toxicity. Subsequent doses of intraventricular oHSV caused little additional toxicity. Interferon induction with phosphorylation of eukaryotic initiation factor-2α (eIF2α) via intraventricular pretreatment with low-dose oHSV or poly I:C mitigated ependyma toxicity. This approach enabled the safe delivery of multiple treatment doses of clinically relevant oHSV G207 and prolonged survival in disseminated brain tumor models. CONCLUSIONS: Toxicity from intraventricular oHSV can be mitigated, resulting in therapeutic benefit. These data support the clinical translation of intraventricular G207.


Subject(s)
Brain Neoplasms , Herpesvirus 1, Human , Oncolytic Virotherapy , Oncolytic Viruses , Mice , Animals , Herpesvirus 1, Human/genetics , Oncolytic Viruses/genetics , Cell Line, Tumor , Mice, Inbred CBA , Oncolytic Virotherapy/adverse effects , Oncolytic Virotherapy/methods , Brain Neoplasms/pathology , Poly I
4.
Front Oncol ; 12: 969787, 2022.
Article in English | MEDLINE | ID: mdl-35992852

ABSTRACT

Glioblastoma multiforme (GBM) is one of the most common and malignant brain tumors in adulthood with a median survival of only 15 months. This poor prognosis is related to GBM's ability to extensively infiltrate the surrounding brain parenchyma resulting in diffuse spread of neoplastic cells in the brain, responsible for high rate of recurrence. CD44 (Cluster of Differentiation 44) is a transmembrane protein, overexpressed in multiple cancer types, including gliomas, and implicated in cell motility, proliferation and angiogenesis. Multiple studies have investigated the role of CD44 in GBM cells and have highlighted a link between tumor malignancy and CD44 expression. However up to date, little is known of the role of CD44 on cells from the tumor microenvironment (TME). Here, we have investigated a potential role of CD44 in the TME in regards to GBM invasiveness. Using an ex-vivo organotypic brain slice invasion assay, we show that absence of CD44 from the TME impairs the ability of glioma cells to invade the surrounding brain parenchyma. By deleting CD44 in the astrocytic, endothelial and myeloid compartments, we show that it is specifically CD44 expression in myeloid cells that is responsible for the observed phenotype. Combining in vivo studies in cell-specific knock-out mice and in vitro analyses on primary microglia we demonstrate that myeloid CD44 is implicated in Toll Like Receptor 2 signaling and is a major regulator of Matrix metalloproteinase 9 expression.

5.
Genes Dev ; 36(9-10): 514-532, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35680424

ABSTRACT

Medulloblastoma is an aggressive brain tumor that occurs predominantly in children. Despite intensive therapy, many patients die of the disease, and novel therapies are desperately needed. Although immunotherapy has shown promise in many cancers, the low mutational burden, limited infiltration of immune effector cells, and immune-suppressive microenvironment of medulloblastoma have led to the assumption that it is unlikely to respond to immunotherapy. However, emerging evidence is challenging this view. Here we review recent preclinical and clinical studies that have identified mechanisms of immune evasion in medulloblastoma, and highlight possible therapeutic interventions that may give new hope to medulloblastoma patients and their families.


Subject(s)
Brain Neoplasms , Cerebellar Neoplasms , Medulloblastoma , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/therapy , Child , Humans , Immunotherapy , Medulloblastoma/therapy , Tumor Microenvironment
6.
Cancers (Basel) ; 13(2)2021 Jan 10.
Article in English | MEDLINE | ID: mdl-33435218

ABSTRACT

Glioblastomas (GBM) are the most aggressive tumors affecting the central nervous system in adults, causing death within, on average, 15 months after diagnosis. Immunocompetent in-vivo models that closely mirror human GBM are urgently needed for deciphering glioma biology and for the development of effective treatment options. The murine GBM cell lines currently available for engraftment in immunocompetent mice are not only exiguous but also inadequate in representing prominent characteristics of human GBM such as infiltrative behavior, necrotic areas, and pronounced tumor heterogeneity. Therefore, we generated a set of glioblastoma cell lines by repeated in vivo passaging of cells isolated from a neural stem cell-specific Pten/p53 double-knockout genetic mouse brain tumor model. Transcriptome and genome analyses of the cell lines revealed molecular heterogeneity comparable to that observed in human glioblastoma. Upon orthotopic transplantation into syngeneic hosts, they formed high-grade gliomas that faithfully recapitulated the histopathological features, invasiveness and immune cell infiltration characteristic of human glioblastoma. These features make our cell lines unique and useful tools to study multiple aspects of glioblastoma pathomechanism and to test novel treatments in an intact immune microenvironment.

7.
Neuro Oncol ; 22(8): 1138-1149, 2020 08 17.
Article in English | MEDLINE | ID: mdl-32297954

ABSTRACT

BACKGROUND: Glioblastoma (GBM) consists of devastating neoplasms with high invasive capacity, which have been difficult to study in vitro in a human-derived model system. Therapeutic progress is also limited by cellular heterogeneity within and between tumors, among other factors such as therapy resistance. To address these challenges, we present an experimental model using human cerebral organoids as a scaffold for patient-derived GBM cell invasion. METHODS: This study combined tissue clearing and confocal microscopy with single-cell RNA sequencing of GBM cells before and after co-culture with organoid cells. RESULTS: We show that tumor cells within organoids extend a network of long microtubes, recapitulating the in vivo behavior of GBM. Transcriptional changes implicated in the invasion process are coherent across patient samples, indicating that GBM cells reactively upregulate genes required for their dispersion. Potential interactions between GBM and organoid cells identified by an in silico receptor-ligand pairing screen suggest functional therapeutic targets. CONCLUSIONS: Taken together, our model has proven useful for studying GBM invasion and transcriptional heterogeneity in vitro, with applications for both pharmacological screens and patient-specific treatment selection on a time scale amenable to clinical practice.


Subject(s)
Brain Neoplasms , Glioblastoma , Organoids , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Neoplasm Invasiveness , Organoids/pathology , Transcriptome , Tumor Cells, Cultured
8.
Front Oncol ; 9: 187, 2019.
Article in English | MEDLINE | ID: mdl-30972297

ABSTRACT

The dynamic and interactive tumor microenvironment is conceived as a considerable parameter in tumor development and therapy response. Implementing this knowledge in the development of future cancer treatments could provide novel options in the combat of highly aggressive and difficult-to-treat tumors such as gliomas. One compartment of the tumor microenvironment that has gained growing interest is the immune system. As endogenous defense machinery the immune system has the capacity to fight against cancer cells. This, however, is frequently circumvented by tumor cells engaging immune-regulatory mechanisms that disable tumor-directed immune responses. Thus, in order to unlock the immune system against cancer cells, it is crucial to characterize in great detail individual tumor-associated immune cell subpopulations and dissect whether and how they influence immune evasion. In this study we investigated the function of a tumor-associated myeloid cell subpopulation characterized by podoplanin expression on the development of high-grade glioma tumors. Here, we show that the deletion of podoplanin in myeloid cells results in increased (CD8+) T-cell infiltrates and significantly prolonged survival in an orthotopic transplantation model. In vitro co-cultivation experiments indicate a podoplanin-dependent transcriptional regulation of arginase-1, a well-known player in myeloid cell-mediated immune suppression. These findings identify podoplanin positive myeloid cells as one novel mediator of the glioma-induced immune suppression. Thus, the targeted ablation of podoplanin positive myeloid cells could be included in combinatorial cancer therapies to enhance immune-mediated tumor elimination.

9.
Blood Adv ; 3(7): 1092-1102, 2019 04 09.
Article in English | MEDLINE | ID: mdl-30948364

ABSTRACT

Binding of the sialomucin-like transmembrane glycoprotein podoplanin (PDPN) to the platelet receptor C-type lectin-like receptor 2 induces platelet activation and aggregation. In human high-grade gliomas, PDPN is highly expressed both in tumor cells and in tumor-associated astrocytes. In glioma patients, high expression of PDPN is associated with worse prognosis and has been shown to correlate with intratumoral platelet aggregation and an increased risk of venous thromboembolism (VTE). To functionally assess the role of PDPN in platelet aggregation in vivo, we established a syngeneic orthotopic murine glioma model in C57/Bl6 mice, based on transplantation of p53- and Pten-deficient neural stem cells. This model is characterized by the presence of intratumoral platelet aggregates and by the upregulation of PDPN both in glioma cells and in astrocytes, reflecting the characteristics of human gliomas. Deletion of PDPN either in tumor cells or in astrocytes resulted in glioma formation with similar penetrance and grade compared with control mice. Importantly, only the lack of PDPN in tumor cells, but not in astrocytes, caused a significant reduction in intratumoral platelet aggregates, whereas in vitro, both cell types have similar platelet aggregation-inducing capacities. Our results demonstrate a causative link between PDPN and platelet aggregation in gliomas and pinpoint the tumor cells as the major players in PDPN-induced platelet aggregation. Our data indicate that blocking PDPN specifically on tumor cells could represent a novel strategy to prevent platelet aggregation and thereby reduce the risk of VTE in glioma patients.


Subject(s)
Glioma/blood , Membrane Glycoproteins/metabolism , Platelet Aggregation , Animals , Astrocytes/metabolism , Disease Models, Animal , Glioma/complications , Glioma/pathology , Mice , Mice, Inbred C57BL , Neural Stem Cells/metabolism , Neural Stem Cells/transplantation , PTEN Phosphohydrolase/deficiency , Tumor Suppressor Protein p53/deficiency , Venous Thromboembolism/etiology
10.
Neuro Oncol ; 21(3): 326-336, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30418623

ABSTRACT

BACKGROUND: Treatment options of glioblastoma, the most aggressive primary brain tumor with frequent relapses and high mortality, are still very limited, urgently calling for novel therapeutic targets. Expression of the glycoprotein podoplanin correlates with poor prognosis in various cancer entities, including glioblastoma. Furthermore, podoplanin has been associated with tumor cell migration and proliferation in vitro; however, experimental data on its function in gliomagenesis in vivo are still missing. Hence, we have functionally investigated the impact of podoplanin on glioblastoma in a preclinical mouse model to evaluate its potential as a therapeutic target. METHODS: Fluorescence activated cell sorting, genome-wide expression analysis, and clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9)-mediated deletion of podoplanin in patient-derived human glioblastoma cells were combined with organotypic brain slice cultures and intracranial injections into mice. RESULTS: We defined a malignant gene signature in tumor cells with high podoplanin expression. The increase and/or maintenance of high podoplanin expression in serial transplantations and in podoplaninlow-sorted glioblastoma cells during outgrowth indicated the association of high podoplanin expression and poor outcome. Unexpectedly, similar rates of proliferation, apoptosis, angiogenesis, and invasion were observed in control and podoplanin-deleted tumors. Accordingly, neither tumor growth nor survival was affected upon podoplanin loss. CONCLUSION: We report that tumor progression occurs independently of podoplanin. Thus, in contrast to previous suggestions, blocking of podoplanin does not represent a promising therapeutic approach. However, as podoplanin is associated with tumor aggressiveness and progression, we propose the cell surface protein as a biomarker for poor prognosis.


Subject(s)
Apoptosis/genetics , Brain Neoplasms/genetics , Cell Proliferation/genetics , Glioblastoma/genetics , Membrane Glycoproteins/genetics , Animals , Antineoplastic Agents, Alkylating/pharmacology , Brain , CRISPR-Cas Systems , Cell Line, Tumor , Cell Survival/drug effects , Cells, Cultured , Disease Progression , Flow Cytometry , Gene Knockdown Techniques , Gene Knockout Techniques , Humans , Mice , Neoplasm Invasiveness/genetics , Neoplasm Transplantation , Neovascularization, Pathologic , Prognosis , Temozolomide/pharmacology , Transcriptome , Tumor Cells, Cultured
11.
J Pathol ; 245(4): 456-467, 2018 08.
Article in English | MEDLINE | ID: mdl-29774524

ABSTRACT

Although mutational inactivation of E-cadherin (CDH1) is the main driver of invasive lobular breast cancer (ILC), approximately 10-15% of all ILCs retain membrane-localized E-cadherin despite the presence of an apparent non-cohesive and invasive lobular growth pattern. Given that ILC is dependent on constitutive actomyosin contraction for tumor development and progression, we used a combination of cell systems and in vivo experiments to investigate the consequences of α-catenin (CTNNA1) loss in the regulation of anchorage independence of non-invasive breast carcinoma. We found that inactivating somatic CTNNA1 mutations in human breast cancer correlated with lobular and mixed ducto-lobular phenotypes. Further, inducible loss of α-catenin in mouse and human E-cadherin-expressing breast cancer cells led to atypical localization of E-cadherin, a rounded cell morphology, and anoikis resistance. Pharmacological inhibition experiments subsequently revealed that, similar to E-cadherin-mutant ILC, anoikis resistance induced by α-catenin loss was dependent on Rho/Rock-dependent actomyosin contractility. Finally, using a transplantation-based conditional mouse model, we demonstrate that inducible inactivation of α-catenin instigates acquisition of lobular features and invasive behavior. We therefore suggest that α-catenin represents a bona fide tumor suppressor for the development of lobular-type breast cancer and as such provides an alternative event to E-cadherin inactivation, adherens junction (AJ) dysfunction, and subsequent constitutive actomyosin contraction. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Subject(s)
Antigens, CD/metabolism , Breast Neoplasms/metabolism , Cadherins/metabolism , Carcinoma, Lobular/metabolism , Cell Adhesion , Tumor Suppressor Proteins/metabolism , alpha Catenin/metabolism , Actomyosin/metabolism , Adherens Junctions/genetics , Adherens Junctions/metabolism , Adherens Junctions/pathology , Animals , Anoikis , Antigens, CD/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cadherins/genetics , Carcinoma, Lobular/genetics , Carcinoma, Lobular/pathology , Cell Proliferation , Cell Shape , Female , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Humans , MCF-7 Cells , Mice, Knockout , Mutation , Neoplasm Invasiveness , Phenotype , Signal Transduction , Tumor Suppressor Protein p53/deficiency , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Proteins/genetics , alpha Catenin/genetics , rho GTP-Binding Proteins/metabolism , rho-Associated Kinases/metabolism
12.
BMC Cancer ; 18(1): 103, 2018 01 30.
Article in English | MEDLINE | ID: mdl-29378533

ABSTRACT

BACKGROUND: The poor prognosis for glioblastoma patients is caused by the diffuse infiltrative growth pattern of the tumor. Therefore, the molecular and cellular processes underlying cell migration continue to be a major focus of glioblastoma research. Emerging evidence supports the concept that the tumor microenvironment has a profound influence on the functional properties of tumor cells. Accordingly, substantial effort must be devoted to move from traditional two-dimensional migration assays to three-dimensional systems that more faithfully recapitulate the complex in vivo tumor microenvironment. METHODS: In order to mimic the tumor microenvironment of adult gliomas, we used adult organotypic brain slices as an invasion matrix for implanted, fluorescently labeled tumor spheroids. Cell invasion was imaged by confocal or epi-fluorescence microscopy and quantified by determining the average cumulative sprout length per spheroid. The tumor microenvironment was manipulated by treatment of the slice with small molecule inhibitors or using different genetically engineered mouse models as donors. RESULTS: Both epi-fluorescence and confocal microscopy were applied to precisely quantify cell invasion in this ex vivo approach. Usage of a red-emitting membrane dye in addition to tissue clearing drastically improved epi-fluorescence imaging. Preparation of brain slices from of a genetically engineered mouse with a loss of a specific cell surface protein resulted in significantly impaired tumor cell invasion. Furthermore, jasplakinolide treatment of either tumor cells or brain slice significantly reduced tumor cell invasion. CONCLUSION: We present an optimized invasion assay that closely reflects in vivo invasion by the implantation of glioma cells into organotypic adult brain slice cultures with a preserved cytoarchitecture. The diversity of applications including manipulation of the tumor cells as well as the microenvironment, permits the investigation of rate limiting factors of cell migration in a reliable context. This model will be a valuable tool for the discovery of the molecular mechanisms underlying glioma cell invasion and, ultimately, the development of novel therapeutic strategies.


Subject(s)
Brain/pathology , Glioblastoma/pathology , Neoplasm Invasiveness/pathology , Spheroids, Cellular/pathology , Animals , Brain/diagnostic imaging , Cell Movement/genetics , Coculture Techniques , Glioblastoma/diagnostic imaging , Humans , Mice , Microscopy, Confocal , Neoplasm Invasiveness/diagnostic imaging , Neoplasm Staging , Spheroids, Cellular/metabolism , Tumor Cells, Cultured , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...