Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 80(2): 210-226.e7, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33002424

ABSTRACT

Many bacterial pathogens regulate their virulence genes via phase variation, whereby length-variable simple sequence repeats control the transcription or coding potential of those genes. Here, we have exploited this relationship between DNA structure and physiological function to discover a globally acting small RNA (sRNA) regulator of virulence in the gastric pathogen Helicobacter pylori. Our study reports the first sRNA whose expression is affected by a variable thymine (T) stretch in its promoter. We show the sRNA post-transcriptionally represses multiple major pathogenicity factors of H. pylori, including CagA and VacA, by base pairing to their mRNAs. We further demonstrate transcription of the sRNA is regulated by the nickel-responsive transcriptional regulator NikR (thus named NikS for nickel-regulated sRNA), thereby linking virulence factor regulation to nickel concentrations. Using in-vitro infection experiments, we demonstrate NikS affects host cell internalization and epithelial barrier disruption. Together, our results show NikS is a phase-variable, post-transcriptional global regulator of virulence properties in H. pylori.


Subject(s)
Helicobacter pylori/genetics , Helicobacter pylori/pathogenicity , RNA, Bacterial/genetics , Repetitive Sequences, Nucleic Acid/genetics , Virulence Factors/metabolism , Bacterial Proteins/metabolism , Base Sequence , Colony Count, Microbial , Endocytosis/drug effects , Gene Deletion , Gene Expression Regulation, Bacterial/drug effects , Helicobacter pylori/drug effects , Host-Pathogen Interactions/drug effects , Nickel/pharmacology , Phenotype , Promoter Regions, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription, Genetic/drug effects
2.
Mol Cell ; 69(5): 893-905.e7, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29499139

ABSTRACT

Cas9 nucleases naturally utilize CRISPR RNAs (crRNAs) to silence foreign double-stranded DNA. While recent work has shown that some Cas9 nucleases can also target RNA, RNA recognition has required nuclease modifications or accessory factors. Here, we show that the Campylobacter jejuni Cas9 (CjCas9) can bind and cleave complementary endogenous mRNAs in a crRNA-dependent manner. Approximately 100 transcripts co-immunoprecipitated with CjCas9 and generally can be subdivided through their base-pairing potential to the four crRNAs. A subset of these RNAs was cleaved around or within the predicted binding site. Mutational analyses revealed that RNA binding was crRNA and tracrRNA dependent and that target RNA cleavage required the CjCas9 HNH domain. We further observed that RNA cleavage was PAM independent, improved with greater complementarity between the crRNA and the RNA target, and was programmable in vitro. These findings suggest that C. jejuni Cas9 is a promiscuous nuclease that can coordinately target both DNA and RNA.


Subject(s)
CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/physiology , Campylobacter jejuni/enzymology , RNA Stability/physiology , RNA, Bacterial/metabolism , RNA, Messenger/metabolism , CRISPR-Associated Protein 9/genetics , Campylobacter jejuni/genetics , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Protein Domains , RNA, Bacterial/genetics , RNA, Messenger/genetics
3.
J Bacteriol ; 197(1): 18-28, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25266388

ABSTRACT

While the model organism Escherichia coli has been the subject of intense study for decades, the full complement of its RNAs is only now being examined. Here we describe a survey of the E. coli transcriptome carried out using a differential RNA sequencing (dRNA-seq) approach, which can distinguish between primary and processed transcripts, and an automated prediction algorithm for transcriptional start sites (TSS). With the criterion of expression under at least one of three growth conditions examined, we predicted 14,868 TSS candidates, including 5,574 internal to annotated genes (iTSS) and 5,495 TSS corresponding to potential antisense RNAs (asRNAs). We examined expression of 14 candidate asRNAs by Northern analysis using RNA from wild-type E. coli and from strains defective for RNases III and E, two RNases reported to be involved in asRNA processing. Interestingly, nine asRNAs detected as distinct bands by Northern analysis were differentially affected by the rnc and rne mutations. We also compared our asRNA candidates with previously published asRNA annotations from RNA-seq data and discuss the challenges associated with these cross-comparisons. Our global transcriptional start site map represents a valuable resource for identification of transcription start sites, promoters, and novel transcripts in E. coli and is easily accessible, together with the cDNA coverage plots, in an online genome browser.


Subject(s)
Escherichia coli/metabolism , Gene Expression Regulation, Bacterial/physiology , RNA, Antisense/metabolism , RNA, Bacterial/metabolism , Transcription Initiation Site/physiology , Chromosome Mapping , Escherichia coli/genetics , Genome, Bacterial , RNA, Antisense/genetics , RNA, Bacterial/genetics , Sequence Analysis, RNA/methods , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...