Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys J ; 90(3): 956-66, 2006 Feb 01.
Article in English | MEDLINE | ID: mdl-16299078

ABSTRACT

The influence of Gramicidin D (GD) incorporation on the structure and phase behavior of aqueous dispersions of DMPC lipid bilayers has been studied using small-angle x-ray scattering (SAXS) and (2)H-NMR spectroscopy. The experiments covered a temperature range from -10 degrees C to 60 degrees C and a pressure range of 0.001-4 kbar. Pressure was used to be able to tune the lipid bilayer conformational order and phase state and because high pressure is an important feature of certain natural biotopes. The data show that, depending on the GD concentration, the structure of the temperature- and pressure-dependent lipid phases is significantly altered by the insertion of the polypeptide, and a p,T-phase diagram could be obtained for intermediate GD concentrations. Upon gramicidin insertion, a rather narrow fluid-gel coexistence regions is formed. Two gel phases are induced which are different from those of the pure lipid bilayer system and which separate at low temperatures/high pressures. For both the temperature- and pressure-induced fluid-to-gel transition, a similar pseudocritical transitional behavior is observed, which is even more pronounced upon incorporation of the peptide.


Subject(s)
Biophysics/methods , Dimyristoylphosphatidylcholine/chemistry , Gramicidin/chemistry , Lipid Bilayers/chemistry , Magnetic Resonance Spectroscopy/methods , Spectrophotometry/methods , Animals , Collagen/chemistry , Molecular Conformation , Peptides/chemistry , Pressure , Rats , Scattering, Radiation , Temperature , X-Ray Diffraction
2.
Chem Phys Lipids ; 106(2): 115-26, 2000 Aug.
Article in English | MEDLINE | ID: mdl-10930564

ABSTRACT

The temperature dependence of the molecular diffusion in monoolein/water systems is investigated at several levels of hydration. Using the proton/deuteron selectivity, field gradient NMR allows the simultaneous determination of the diffusion constants of both, lipid and water molecules in the various lamellar and non-lamellar phases. Due to the mesoscopic structure of the monoolein/water phases, the diffusion coefficients are interpreted as 'reduced' or 'effective' diffusion coefficients, and are related to the microscopic molecular displacements by a so-called 'obstruction factor'. Changes in the microscopic structure at the phase transition from the bicontinuous cubic phases to the inverse hexagonal phase are reflected in the obstruction factor of the monoolein diffusion coefficients. The reduction of the water diffusion coefficients is too high to be explained by an obstruction factor only, implying a mechanism of molecular motion, which strongly differs from that of bulk water. Experiments on samples prepared with isotopic labeled water (2H(2)O and H(2)(17)O) indicate a chemical exchange of protons between the water molecules and the lipid headgroups on a millisecond timescale.


Subject(s)
Glycerides/chemistry , Calorimetry, Differential Scanning , Magnetic Resonance Spectroscopy , Molecular Structure , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...