Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Cell Sci ; 137(20)2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38738282

ABSTRACT

Advances in imaging, segmentation and tracking have led to the routine generation of large and complex microscopy datasets. New tools are required to process this 'phenomics' type data. Here, we present 'Cell PLasticity Analysis Tool' (cellPLATO), a Python-based analysis software designed for measurement and classification of cell behaviours based on clustering features of cell morphology and motility. Used after segmentation and tracking, the tool extracts features from each cell per timepoint, using them to segregate cells into dimensionally reduced behavioural subtypes. Resultant cell tracks describe a 'behavioural ID' at each timepoint, and similarity analysis allows the grouping of behavioural sequences into discrete trajectories with assigned IDs. Here, we use cellPLATO to investigate the role of IL-15 in modulating human natural killer (NK) cell migration on ICAM-1 or VCAM-1. We find eight behavioural subsets of NK cells based on their shape and migration dynamics between single timepoints, and four trajectories based on sequences of these behaviours over time. Therefore, by using cellPLATO, we show that IL-15 increases plasticity between cell migration behaviours and that different integrin ligands induce different forms of NK cell migration.


Subject(s)
Cell Movement , Interleukin-15 , Killer Cells, Natural , Humans , Killer Cells, Natural/cytology , Killer Cells, Natural/metabolism , Killer Cells, Natural/immunology , Interleukin-15/metabolism , Software , Intercellular Adhesion Molecule-1/metabolism , Vascular Cell Adhesion Molecule-1/metabolism
2.
Cancer Discov ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819218

ABSTRACT

Clonal hematopoiesis (CH) is a common premalignant state in the blood and confers an increased risk of blood cancers and all-cause mortality. Identification of therapeutic targets in CH has been hindered by the lack of an ex vivo platform amenable for studying primary hematopoietic stem and progenitor cells (HSPCs). Here, we utilize an ex vivo co-culture system of HSPCs with bone marrow endothelial cells to perform CRISPR/Cas9 screens in mutant HSPCs. Our data reveal that loss of the histone demethylase family members Kdm3b and Jmjd1c specifically reduces the fitness of Idh2- and Tet2-mutant HSPCs. Kdm3b loss in mutant cells leads to decreased expression of critical cytokine receptors including Mpl, rendering mutant HSPCs preferentially susceptible to inhibition of downstream JAK2 signaling. Our study nominates an epigenetic regulator and an epigenetically regulated receptor signaling pathway as genotype-specific therapeutic targets and provides a scalable platform to identify genetic dependencies in mutant HSPCs.

3.
Cancer Discov ; 14(5): 737-751, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38230747

ABSTRACT

Gain-of-function mutations activating JAK/STAT signaling are seen in the majority of patients with myeloproliferative neoplasms (MPN), most commonly JAK2V617F. Although clinically approved JAK inhibitors improve symptoms and outcomes in MPNs, remissions are rare, and mutant allele burden does not substantively change with chronic therapy. We hypothesized this is due to limitations of current JAK inhibitors to potently and specifically abrogate mutant JAK2 signaling. We therefore developed a conditionally inducible mouse model allowing for sequential activation, and then inactivation, of Jak2V617F from its endogenous locus using a combined Dre-rox/Cre-lox dual-recombinase system. Jak2V617F deletion abrogates MPN features, induces depletion of mutant-specific hematopoietic stem/progenitor cells, and extends overall survival to an extent not observed with pharmacologic JAK inhibition, including when cooccurring with somatic Tet2 loss. Our data suggest JAK2V617F represents the best therapeutic target in MPNs and demonstrate the therapeutic relevance of a dual-recombinase system to assess mutant-specific oncogenic dependencies in vivo. SIGNIFICANCE: Current JAK inhibitors to treat myeloproliferative neoplasms are ineffective at eradicating mutant cells. We developed an endogenously expressed Jak2V617F dual-recombinase knock-in/knock-out model to investigate Jak2V617F oncogenic reversion in vivo. Jak2V617F deletion abrogates MPN features and depletes disease-sustaining MPN stem cells, suggesting improved Jak2V617F targeting offers the potential for greater therapeutic efficacy. See related commentary by Celik and Challen, p. 701. This article is featured in Selected Articles from This Issue, p. 695.


Subject(s)
Janus Kinase 2 , Myeloproliferative Disorders , Animals , Humans , Mice , Disease Models, Animal , Hematopoietic Stem Cells/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Mutation , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/drug therapy , Signal Transduction
4.
bioRxiv ; 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37961659

ABSTRACT

Advances in imaging, cell segmentation, and cell tracking now routinely produce microscopy datasets of a size and complexity comparable to transcriptomics or proteomics. New tools are required to process this 'phenomics' type data. Cell PLasticity Analysis TOol (cellPLATO) is a Python-based analysis software designed for measurement and classification of diverse cell behaviours based on clustering of parameters of cell morphology and motility. cellPLATO is used after segmentation and tracking of cells from live cell microscopy data. The tool extracts morphological and motility metrics from each cell per timepoint, before being using them to segregate cells into behavioural subtypes with dimensionality reduction. Resultant cell tracks have a 'behavioural ID' for each cell per timepoint corresponding to their changing behaviour over time in a sequence. Similarity analysis allows the grouping of behavioural sequences into discrete trajectories with assigned IDs. Trajectories and underlying behaviours generate a phenotypic fingerprint for each experimental condition, and representative cells are mathematically identified and graphically displayed for human understanding of each subtype. Here, we use cellPLATO to investigate the role of IL-15 in modulating NK cell migration on ICAM-1 or VCAM-1. We find 8 behavioural subsets of NK cells based on their shape and migration dynamics, and 4 trajectories of behaviour. Therefore, using cellPLATO we show that IL-15 increases plasticity between cell migration behaviours and that different integrin ligands induce different forms of NK cell migration.

5.
bioRxiv ; 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38014231

ABSTRACT

Single-cell genomics has the potential to map cell states and their dynamics in an unbiased way in response to perturbations like disease. However, elucidating the cell-state transitions from healthy to disease requires analyzing data from perturbed samples jointly with unperturbed reference samples. Existing methods for integrating and jointly visualizing single-cell datasets from distinct contexts tend to remove key biological differences or do not correctly harmonize shared mechanisms. We present Decipher, a model that combines variational autoencoders with deep exponential families to reconstruct derailed trajectories (https://github.com/azizilab/decipher). Decipher jointly represents normal and perturbed single-cell RNA-seq datasets, revealing shared and disrupted dynamics. It further introduces a novel approach to visualize data, without the need for methods such as UMAP or TSNE. We demonstrate Decipher on data from acute myeloid leukemia patient bone marrow specimens, showing that it successfully characterizes the divergence from normal hematopoiesis and identifies transcriptional programs that become disrupted in each patient when they acquire NPM1 driver mutations.

6.
bioRxiv ; 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37732282

ABSTRACT

Natural killer (NK) cells develop from CD34+ progenitors in a stage-specific manner defined by changes in cell surface receptor expression and function. Secondary lymphoid tissues, including tonsil, are sites of human NK cell development. Here we present new insights into human NK cell development in pediatric tonsil using cyclic immunofluorescence and imaging mass cytometry. We show that NK cell subset localization and interactions are dependent on NK cell developmental stage and tissue residency. NK cell progenitors are found in the interfollicular domain in proximity to cytokine-expressing stromal cells that promote proliferation and maturation. Mature NK cells are primarily found in the T-cell rich parafollicular domain engaging in cell-cell interactions that differ depending on their stage and tissue residency. The presence of local inflammation results in changes in NK cell interactions, abundance, and localization. This study provides the first comprehensive atlas of human NK cell development in secondary lymphoid tissue.

7.
Res Sq ; 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38196606

ABSTRACT

Natural killer (NK) cells play a critical role in physiologic and pathologic conditions such as pregnancy, infection, autoimmune disease and cancer. In cancer, numerous strategies have been designed to exploit the cytolytic properties of NK cells, with variable success. A major hurdle to NK-cell focused therapies is NK cell recruitment and infiltration into tumors. While the chemotaxis pathways regulating NK recruitment to different tissues are well delineated, the mechanisms human NK cells employ to physically migrate are ill-defined. We show for the first time that human NK cells express fibroblast activation protein (FAP), a cell surface protease previously thought to be primarily expressed by activated fibroblasts. FAP degrades the extracellular matrix to facilitate cell migration and tissue remodeling. We used novel in vivo zebrafish and in vitro 3D culture models to demonstrate that FAP knock out and pharmacologic inhibition restrict NK cell migration, extravasation, and invasion through tissue matrix. Notably, forced overexpression of FAP promotes NK cell invasion through matrix in both transwell and tumor spheroid assays, ultimately increasing tumor cell lysis. Additionally, FAP overexpression enhances NK cells invasion into a human tumor in immunodeficient mice. These findings demonstrate the necessity of FAP in NK cell migration and present a new approach to modulate NK cell trafficking and enhance cell-based therapy in solid tumors.

8.
Methods Mol Biol ; 2463: 129-151, 2022.
Article in English | MEDLINE | ID: mdl-35344172

ABSTRACT

Migration is an important function for natural killer cells. Cell motility has implications in development, tissue infiltration, and cytotoxicity, and measuring the properties of natural killer (NK) cell migration using in vitro assays can be highly informative. Many researchers have an interest in studying properties of NK cell migration in the context of genetic mutation, disease, or in specific tissues and microenvironments. Motility assays can also provide information on the localization of proteins during different phases of cell migration. These assays can be performed on different surfaces for migration or coupled with chemoattractants and/or target cells to test functional outcomes or characterize cell migration speeds and phenotypes. NK cells undergo migration during differentiation in tissue, and these conditions can be modeled by culturing NK cells on a confluent bed of stromal cells on glass and imaging cell migration. Alternatively, fibronectin- or ICAM-1-coated surfaces promote NK cell migration and can be used as substrates. Here, we will describe techniques for the experimental setup and analysis of NK cell motility assays by confocal microscopy or in-incubator imaging using commercially available systems. Finally, we describe open-source software for analyzing cell migration using manual tracking or automated approaches and discuss considerations for the implementation of each of these methods.


Subject(s)
Killer Cells, Natural , Stromal Cells , Cell Migration Assays , Cell Movement/physiology , Humans , Microscopy, Confocal
9.
Clin Cancer Res ; 27(12): 3456-3468, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33782031

ABSTRACT

PURPOSE: The JAK1/2 inhibitor ruxolitinib has demonstrated significant benefits for patients with myeloproliferative neoplasms (MPN). However, patients often lose response to ruxolitinib or suffer disease progression despite therapy with ruxolitinib. These observations have prompted efforts to devise treatment strategies to improve therapeutic efficacy in combination with ruxolitinib therapy. Activation of JAK-STAT signaling results in dysregulation of key downstream pathways, notably increased expression of cell-cycle mediators including CDC25A and the PIM kinases. EXPERIMENTAL DESIGN: Given the involvement of cell-cycle mediators in MPNs, we sought to examine the efficacy of therapy combining ruxolitinib with a CDK4/6 inhibitor (LEE011) and a PIM kinase inhibitor (PIM447). We utilized JAK2-mutant cell lines, murine models, and primary MPN patient samples for these studies. RESULTS: Exposure of JAK2-mutant cell lines to the triple combination of ruxolitinib, LEE011, and PIM447 resulted in expected on-target pharmacodynamic effects, as well as increased apoptosis and a decrease in the proportion of cells in S-phase, compared with ruxolitinib. As compared with ruxolitinib monotherapy, combination therapy led to reductions in spleen and liver size, reduction of bone marrow reticulin fibrosis, improved overall survival, and elimination of disease-initiating capacity of treated bone marrow, in murine models of MPN. Finally, the triple combination reduced colony formation capacity of primary MPN patient samples to a greater extent than ruxolitinib. CONCLUSIONS: The triple combination of ruxolitinib, LEE011, and PIM447 represents a promising therapeutic strategy with the potential to increase therapeutic responses in patients with MPN.


Subject(s)
Myeloproliferative Disorders , Neoplasms , Primary Myelofibrosis , Animals , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6 , Humans , Janus Kinase 1 , Janus Kinase 2/metabolism , Mice , Myeloproliferative Disorders/drug therapy , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/metabolism , Nitriles/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Signal Transduction
10.
Cell Stem Cell ; 25(5): 682-696.e8, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31495782

ABSTRACT

Transcriptional regulators, including the cohesin complex member STAG2, are recurrently mutated in cancer. The role of STAG2 in gene regulation, hematopoiesis, and tumor suppression remains unresolved. We show that Stag2 deletion in hematopoietic stem and progenitor cells (HSPCs) results in altered hematopoietic function, increased self-renewal, and impaired differentiation. Chromatin immunoprecipitation (ChIP) sequencing revealed that, although Stag2 and Stag1 bind a shared set of genomic loci, a component of Stag2 binding sites is unoccupied by Stag1, even in Stag2-deficient HSPCs. Although concurrent loss of Stag2 and Stag1 abrogated hematopoiesis, Stag2 loss alone decreased chromatin accessibility and transcription of lineage-specification genes, including Ebf1 and Pax5, leading to increased self-renewal and reduced HSPC commitment to the B cell lineage. Our data illustrate a role for Stag2 in transformation and transcriptional dysregulation distinct from its shared role with Stag1 in chromosomal segregation.


Subject(s)
Cell Cycle Proteins/metabolism , Cell Self Renewal/genetics , Chromatin/metabolism , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Nuclear Proteins/metabolism , Animals , B-Lymphocytes/metabolism , Cell Cycle Proteins/genetics , Cell Lineage/genetics , Chromatin Immunoprecipitation , Gene Expression Regulation/genetics , Gene Knockout Techniques , Hematopoietic Stem Cells/cytology , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism , Nuclear Proteins/genetics , PAX5 Transcription Factor/genetics , PAX5 Transcription Factor/metabolism , RNA-Seq , Synthetic Lethal Mutations/genetics , Trans-Activators/genetics , Trans-Activators/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...