Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Light Sci Appl ; 10(1): 223, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34728608

ABSTRACT

Measuring the aberrations of optical systems is an essential step in the fabrication of high precision optical components. Such a characterization is usually based on comparing the device under investigation with a calibrated reference object. However, when working at the cutting-edge of technology, it is increasingly difficult to provide an even better or well-known reference device. In this manuscript we present a method for the characterization of high numerical aperture microscope objectives, functioning without the need of calibrated reference optics. The technique constitutes a nanoparticle, acting as a dipole-like scatterer, that is placed in the focal volume of the microscope objective. The light that is scattered by the particle can be measured individually and serves as the reference wave in our system. Utilizing the well-characterized scattered light as nearly perfect reference wave is the main idea behind this manuscript.

2.
Light Sci Appl ; 8: 52, 2019.
Article in English | MEDLINE | ID: mdl-31231518

ABSTRACT

The electromagnetic field scattered by nano-objects contains a broad range of wavevectors and can be efficiently coupled to waveguided modes. The dominant contribution to scattering from subwavelength dielectric and plasmonic nanoparticles is determined by electric and magnetic dipolar responses. Here, we experimentally demonstrate spectral and phase selective excitation of Janus dipoles, sources with electric and magnetic dipoles oscillating out of phase, in order to control near-field interference and directional coupling to waveguides. We show that by controlling the polarisation state of the dipolar excitations and the excitation wavelength to adjust their relative contributions, directionality and coupling strength can be fully tuned. Furthermore, we introduce a novel spinning Janus dipole featuring cylindrical symmetry in the near and far field, which results in either omnidirectional coupling or noncoupling. Controlling the propagation of guided light waves via fast and robust near-field interference between polarisation components of a source is required in many applications in nanophotonics and quantum optics.

SELECTION OF CITATIONS
SEARCH DETAIL
...