Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Food Chem ; 442: 138331, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38271902

ABSTRACT

The incidence of type 2 diabetes is linked to consuming processed, high-glycemic foods low in dietary fiber. Soluble dietary fibers are known to improve blood glucose tolerance. This study examined the impact of processing on the in vitro glucose release of fiber-rich, high-glycemic foods. The impact of composition and microstructure on in vitro glucose release and starch digestibility was evaluated in doughs - untreated, baked at 180 °C, and extruded at 150 °C and 180 °C - with partial enrichment of high-methylester pectin. Pectin enrichment decreased starch digestibility, altered the food matrix, and doubled in vitro chyme-viscosity resulting in reduced glucose release in baked (180 °C), and extruded (150 °C) products. Baking or extrusion cooking increased starch digestibility - converting slowly into rapidly available starch and free glucose. Additionally, resistant starch levels were enhanced by up to fivefold. The variations in glucose release originated from a complex interplay between starch digestibility, viscosity, and the food matrix.


Subject(s)
Diabetes Mellitus, Type 2 , Glucose , Humans , Pectins , Digestion , Food Handling/methods , Starch/chemistry , Cooking
2.
Polymers (Basel) ; 15(13)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37447407

ABSTRACT

The integration of platelet-shaped montmorillonite particles to improve the oxygen barrier of polyvinyl-alcohol-based barrier layers is state-of-the-art, but research on roll-to-roll coatings of such composite barrier lacquers has not been widely published. In this study, two different coating techniques, slot-die and reverse gravure, were used on a roll-to-roll scale to apply barrier lacquers comprising polyvinyl alcohol and montmorillonite. The lacquers were analyzed regarding viscosity at certain shear rates and surface energy and the dried coating layers regarding oxygen barrier, surface morphology, and particle orientation. Low permeability coefficients delivering a high oxygen barrier of 0.14 and 0.12 cm3 (STP) 1 µmm2 d bar were achieved for the coating layers with slot-die and reverse gravure coating, respectively. It turned out that the properties of the barrier lacquer need to be adjusted to the coating technique to achieve high oxygen barrier performance. By tailoring the barrier lacquer formulation, the orientation of the platelet-shaped montmorillonite particles can be achieved using both techniques. A low solid content of down to 3 wt% is preferable for the premetered slot-die coating, because it results in low agglomeration quantity in the coating layer. A high solid content of up to 9 wt% is preferable for the self-metered reverse gravure coating to assure a homogeneously coated layer.

3.
Foods ; 11(22)2022 Nov 12.
Article in English | MEDLINE | ID: mdl-36429200

ABSTRACT

Macauba palm fruits (Acrocomia aculeata and Acrocomia totai) are emerging as sources of high-quality oils from their pulp and kernels. The protein-rich macauba kernel meal (MKM) left after oil extraction remains undervalued, mainly due to the lack of suitable deoiling parameters and integrated protein recovery methods. Therefore, the present study aimed to produce protein concentrates from MKM using sieve fractionation. The deoiling parameters, comprising pressing, milling, and solvent extraction, were improved in terms of MKM functionality. The combination of hydraulic pressing, milling to 1 mm, and the hexane extraction of A. aculeata kernels resulted in MKM with the highest protein solubility (77.1%), emulsifying activity index (181 m2/g protein), and emulsion stability (149 min). After sieve fractionation (cut size of 62 µm), this meal yielded a protein concentrate with a protein content of 65.6%, representing a 74.1% protein enrichment compared to the initial MKM. This protein concentrate showed a reduced gelling concentration from 8 to 6%, and an increased emulsion stability from 149 to 345 min, in comparison to the MKM before sieving. Therefore, sieve fractionation after improved deoiling allows for the simple, cheap, and environmentally friendly recovery of MKM proteins, highlighting the potential of macauba kernels as a new source of protein.

4.
Foods ; 11(9)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35563924

ABSTRACT

In some coastal areas, large quantities of beach-cast macroalgae can accumulate and are usually considered waste and disposed of. However, due to their biofunctional and nutritional properties, they have great potential as a new source of raw materials. Increasing population growth has made the search for alternative raw materials with valuable nutritional properties urgent; here, beach-cast macroalgae could provide great potential. Our research goal was to characterize the nutritional profile of 12 beach-cast seaweed species from the Brazilian coast to assess their potential valorization. A considerable number of nutritional compounds was observed, such as ash (6.5-59.3%), total dietary fibers (22.1-65.8%), proteins (5.1-21.5%), and carbohydrates (31.4-81.0%), with an expressive abundance of minerals, free amino acids, and fatty acids. Spatoglossum schroederi and Alsidium seaforthii showed protein contents of 21.5 ± 0.2%, 19.7 ± 0.1%, and high amounts of total dietary fiber of 59.2 ± 0.4%, 61.7 ± 4.9%, respectively. The overall profile suggests that beach-cast seaweeds are suitable for nutritional and other bioeconomical purposes, to which different species with different characteristics contribute. Contamination of these seaweeds with unwanted toxic compounds like micropollutants was not studied. However, this must be considered before they are used for human consumption.

5.
Front Nutr ; 9: 882458, 2022.
Article in English | MEDLINE | ID: mdl-35445057

ABSTRACT

Due to their antioxidant properties, secondary plant metabolites can scavenge free radicals such as reactive oxygen species and protect foods from oxidation processes. Our aim was to study structural influences, like basic structure, number of hydroxyl groups and number of Bors criteria on the outcome of the oxygen radical absorbance capacity (ORAC) assay. Furthermore, similarities and differences to other in vitro antioxidant assays were analyzed by principal component analysis. Our studies confirmed that the antioxidant behavior in the ORAC assay is dominated by the number and types of substituents and not by the Bors criteria, as long as no steric hindrance occurs. For example, morin (MOR) with five hydroxyl groups and two Bors criteria reached an area under the curve of (3.64 ± 0.08) × 105, which was significantly higher than quercetin-7-D-glucoside (QGU7) (P < 0.001), and thus the highest result. Principal component analysis showed different dependencies regarding structural properties of Folin-Ciocalteu (FC)- and 2,2-diphenyl-1-picrylhydrazyl (DPPH)-assays or 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)- and ORAC-assays, respectively. Therefore, we conclude that they are based on different reaction mechanisms. The number of hydroxyl groups showed a stronger influence on the antioxidant activity than the Bors criteria. Due to these differences, the correlation of these rapid tests to specific applications should be validated.

6.
Front Nutr ; 9: 790157, 2022.
Article in English | MEDLINE | ID: mdl-35340548

ABSTRACT

Materials with high barrier properties against oxygen are required for the packaging of many sensitive foods. Since commodity polymers lack these properties, additional barrier materials are used in plastic-based barrier packaging. These are usually more expensive than commodity polymers and, in higher fractions, also make recycling more difficult. Current developments, therefore, aim at barrier layers that are as thin as possible but retain the barrier properties. One approach is to incorporate nanoparticles into these layers. In this study, the barrier properties of nanocomposite coatings, consisting of unmodified polyvinyl alcohol (PVA), and dispersed stick-shaped halloysite (Hal) or platelet-shaped montmorillonite (MMT) silicate nanoparticles, were investigated. The PVA was dissolved in aqueous nanoparticle dispersions, which were prepared by mechanical shearing, to produce the so-called "nanolacquer." Nanolacquers with nanoparticle concentrations of 7, 30, and 47 vol% with respect to PVA were applied in a single process step with k-bar on a polypropylene substrate film. The integration of 30 vol% platelet-shaped MMT enhances the barrier performance in comparison to pure PVA by a factor of 12 and 17 for oxygen and helium, respectively. Scanning electron microscopy (SEM) shows a homogeneous distribution and a parallel alignment of the nanoparticles within the coated layer. An increase in the crystallinity of PVA was observed due to the nanoparticle integration as demonstrated by x-ray diffraction (XRD) measurements. The investigation by Fourier transform infrared (FTIR) spectroscopy and the activation energy of the permeation coefficient indicate an interaction between the nanoparticles and the PVA. The theoretically calculated values for barrier enhancement accord well with the experimental values, which emphasizes that the gas barrier improvement for oxygen and helium is mainly dominated by the tortuous path effect.

7.
Foods ; 11(1)2022 Jan 04.
Article in English | MEDLINE | ID: mdl-35010244

ABSTRACT

Combinations of enzymatic hydrolysis using different proteolytic enzymes (papain, Esperase®, trypsin) and lactic fermentation with Lactobacillus plantarum were used to alter potential pea allergens, the functional properties and sensory profile of pea protein isolate (PPI). The order in which the treatments were performed had a major impact on the changes in the properties of the pea protein isolate; the highest changes were seen with the combination of fermentation followed by enzymatic hydrolysis. SDS-PAGE, gel filtration, and ELISA results showed changes in the protein molecular weight and a reduced immunogenicity of treated samples. Treated samples showed significantly increased protein solubility at pH 4.5 (31.19-66.55%) and at pH 7.0 (47.37-74.95%), compared to the untreated PPI (6.98% and 40.26%, respectively). The foaming capacity was significantly increased (1190-2575%) compared to the untreated PPI (840%). The treated PPI showed reduced pea characteristic off-flavors, where only the treatment with Esperase® significantly increased the bitterness. The results from this study suggest that the combination of enzymatic hydrolysis and lactic fermentation is a promising method to be used in the food industry to produce pea protein ingredients with higher functionality and a highly neutral taste. A reduced detection signal of polyclonal rabbit anti-pea-antibodies against the processed protein preparations in ELISA furthermore might indicate a decreased immunological reaction after consumption.

8.
Antioxidants (Basel) ; 10(5)2021 May 20.
Article in English | MEDLINE | ID: mdl-34065207

ABSTRACT

Plants produce a diverse array of secondary metabolites that are generally nonessential but facilitate ecological interactions. Fruits, vegetables, seeds and nuts can accumulate bioactive secondary metabolites with health-promoting properties, including the potent antioxidant activities of phenolic compounds. Several in vitro assays have been developed to measure the polyphenol content and antioxidant activity of plant extracts, e.g., the simple and highly popular Folin-Ciocalteu (FC) assay. However, the literature contains a number of different descriptions of the assay and it is unclear whether the assay measures the polyphenol content or reducing capacity of the sample. To determine the influence of phenolic structures on the outcome of the FC assay, we tested phenols representing different subgroups (phenolic acids, flavonols, flavanols, dihydrochalcones and flavanones). We observed different results for each reference substance and subgroup. Accordingly, we concluded that the FC assay does not measure the polyphenol content of a sample but determines its reducing capacity instead. Assigning the substances to five structural classes showed that the FC results depend on the number of fulfilled Bors criteria. If a molecule fulfills none of the Bors criteria, the FC results depend on the number of OH groups. We did not find a correlation with other single electron transfer assays (e.g., ABTS and DPPH assays). Furthermore, the FC assay was compatible with all five subgroups and should be preferred over the DPPH assay, which is specific for extracts rich in dihydrochalcones or flavanones.

9.
Foods ; 10(4)2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33918162

ABSTRACT

Pea protein concentrates and isolates are important raw materials for the production of plant-based food products. To select suitable peas (Pisum sativum L.) for protein extraction for further use as food ingredients, twelve different cultivars were subjected to isoelectric precipitation and spray drying. Both the dehulled pea flours and protein isolates were characterized regarding their chemical composition and the isolates were analyzed for their functional properties, sensory profiles, and molecular weight distributions. Orchestra, Florida, Dolores, and RLPY cultivars showed the highest protein yields. The electrophoretic profiles were similar, indicating the presence of all main pea allergens in all isolates. The colors of the isolates were significantly different regarding lightness (L*) and red-green (a*) components. The largest particle size was shown by the isolate from Florida cultivar, whereas the lowest was from the RLPY isolate. At pH 7, protein solubility ranged from 40% to 62% and the emulsifying capacity ranged from 600 to 835 mL g-1. The principal component analysis revealed similarities among certain pea cultivars regarding their physicochemical and functional properties. The sensory profile of the individual isolates was rather similar, with an exception of the pea-like and bitter attributes, which were significantly different among the isolates.

10.
Nutrients ; 13(5)2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33919341

ABSTRACT

Soluble dietary fibers (SDF) are known to reduce the post-prandial plasma glucose levels. However, the detailed mechanisms of this reduced glucose release in the human gut still remain unclear. The aim of our study was to systematically investigate the effect of different types of SDF on glucose release in an in vitro model as a prerequisite for the selection of fibers suitable for application in humans. Three types of carboxymethyl cellulose (CMC) were used to investigate the correlations between fiber concentration, molecular weight (MW), and viscosity on diffusion of glucose using a side-by-side system. CMC solutions below the coil overlap (c*) influenced the glucose diffusivity only marginally, whereas at concentrations above c* the diffusion of glucose was significantly decreased. Solutions of lower MW exhibited a lower viscosity with lower glucose diffusion compared to solutions with higher MW CMC, attributed to the higher density of the solutions. All CMC solutions showed a systematic positive deviation from Stokes-Einstein behavior indicating a greater rise in viscosity than reduction in diffusion. Therefore, our results pave the way for a new approach for assessing glucose diffusion in solutions comprising dietary fibers and may contribute to further elucidating the mechanisms of post-prandial plasma glucose level reduction.


Subject(s)
Carboxymethylcellulose Sodium/chemistry , Chemical Phenomena , Glucose/metabolism , Convection , Diffusion , Molecular Weight , Rheology , Solutions , Time Factors , Viscosity
11.
Molecules ; 26(5)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33669139

ABSTRACT

Numerous assays were developed to measure the antioxidant activity, but each has limitations and the results obtained by different methods are not always comparable. Popular examples are the DPPH and ABTS assay. Our aim was to study similarities and differences of these two assay regarding the measured antioxidant potentials of 24 phenolic compounds using the same measurement and evaluation methods. This should allow conclusions to be drawn as to whether one of the assays is more suitable for measuring specific subgroups like phenolic acids, flavonols, flavanones, dihydrochalcones or flavanols. The assays showed common trends for the mean values of most of the subgroups. Some dihydrochalcones and flavanones did not react with the DPPH radical in contrast to the ABTS radical, leading to significant differences. Therefore, to determine the antioxidant potential of dihydrochalcone or flavanone-rich extracts, the ABTS assay should be preferred. We found that the results of the flavonoids in the DPPH assay were dependent on the Bors criteria, whereas the structure-activity relationship in the ABTS assay was not clear. For the phenolic acids, the results in the ABTS assay were only high for pyrogallol structures, while the DPPH assay was mainly determined by the number of OH groups.


Subject(s)
Antioxidants/pharmacology , Phenols/pharmacology , Antioxidants/chemistry , Benzothiazoles/antagonists & inhibitors , Biphenyl Compounds/antagonists & inhibitors , Electron Transport , Phenols/chemistry , Picrates/antagonists & inhibitors , Sulfonic Acids/antagonists & inhibitors
12.
Foods ; 10(2)2021 Jan 31.
Article in English | MEDLINE | ID: mdl-33572504

ABSTRACT

Lupin protein isolate was treated using the combination of enzymatic hydrolysis (Papain, Alcalase 2.4 L and Pepsin) and lactic acid fermentation (Lactobacillus sakei ssp. carnosus, Lactobacillus amylolyticus and Lactobacillus helveticus) to investigate the effect on functional properties, sensory profile and protein integrity. The results showed increased foaming activity (2466-3481%) and solubility at pH 4.0 (19.7-36.7%) of all fermented hydrolysates compared to the untreated lupin protein isolate with 1613% of foaming activity and a solubility of 7.3 (pH 4.0). Results of the SDS-PAGE and Bead-Assay showed that the combination of enzymatic hydrolysis and fermentation of LPI was effective in reducing L. angustifolius major allergen Lup an 1 to a residual level of <0.5%. The combination of enzymatic hydrolysis and fermentation enables the production of food ingredients with good functional properties in terms of protein solubility and foam formation, with a balanced aroma and taste profile.

13.
Curr Res Food Sci ; 4: 1-10, 2021.
Article in English | MEDLINE | ID: mdl-33385169

ABSTRACT

Pea protein isolate (PPI, from Pisum sativum L.) was fermented with six different lactic acid bacteria strains for 24 â€‹h and 48 â€‹h. The fermented samples were analyzed regarding their retronasal aroma and taste, their protein solubility, emulsifying and foaming capacity. Changes in the molecular weight distribution were analyzed to monitor potential effects of fermentation on the main allergenic protein fractions of PPI. After 24-h fermentation, PPI's characteristic aroma attributes and bitter taste decreased for all fermented PPI. However, after 48-h fermentation, cheesy aroma, and acid and salty tastes were increased. The PPI fermented with L. plantarum showed the most neutral taste and the panel's highest preference; instead, fermentation with L. fermentum led to a fecal aroma and was the least preferred. The protein solubility and emulsifying capacity decreased after PPI fermentation, while foaming capacity remained constant in comparison to the untreated PPI. The electrophoretic results showed a reduction in the intensity of the allergenic protein fractions; however, these changes might be attributed to the reduced protein solubility rather than to a high proteolytic effect of the strains. Fermentation of PPI for 24 â€‹h and 48 â€‹h might not be a suitable method for the production of highly functional pea proteins. Further modification methods have to be investigated in the future.

14.
Int J Mol Sci ; 21(18)2020 Sep 05.
Article in English | MEDLINE | ID: mdl-32899482

ABSTRACT

Plant compounds are described to interact with bile acids during small intestinal digestion. This review will summarise mechanisms of interaction between bile acids and plant compounds, challenges in in vivo and in vitro analyses, and possible consequences on health. The main mechanisms of interaction assume that increased viscosity during digestion results in reduced micellar mobility of bile acids, or that bile acids and plant compounds are associated or complexed at the molecular level. Increasing viscosity during digestion due to specific dietary fibres is considered a central reason for bile acid retention. Furthermore, hydrophobic interactions are proposed to contribute to bile acid retention in the small intestine. Although frequently hypothesised, no mechanism of permanent binding of bile acids by dietary fibres or indigestible protein fractions has yet been demonstrated. Otherwise, various polyphenolic structures were recently associated with reduced micellar solubility and modification of steroid and bile acid excretion but underlying molecular mechanisms of interaction are not yet fully understood. Therefore, future research activities need to consider the complex composition and cell-wall structures as influenced by processing when investigating bile acid interactions. Furthermore, influences of bile acid interactions on gut microbiota need to be addressed to clarify their role in bile acid metabolism.


Subject(s)
Bile Acids and Salts/metabolism , Bile Acids and Salts/physiology , Digestion/physiology , Adsorption , Animals , Dietary Fiber/analysis , Gastrointestinal Microbiome , Humans , Phytochemicals/metabolism , Plants/metabolism , Solubility , Viscosity , beta-Glucans/metabolism
15.
Food Sci Nutr ; 8(7): 3041-3051, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32724568

ABSTRACT

The modification of lupin protein isolates (LPI) by means of enzymatic hydrolysis (Lupinus angustifolius cultivar Boregine) was performed with four enzyme preparations (Alcalase 2.4 L, Papain, Corolase 7089, and Neutrase 0.8 L) in a one- and two-step process to determine the efficacy for the destruction of major IgE-reactive polypeptides and the evaluation of the technofunctional and sensory properties of lupin protein hydrolysates. Combinations of Alcalase 2.4 L and Papain were most effective in the degradation of polypeptides in L. angustifolius as measured by sodium dodecylsulfate-polyacrylamide gel electrophoresis. The enzymatic hydrolysis of the LPI increased their technofunctional properties such as protein solubility, foam activity, and emulsifying capacity almost independently of the enzyme preparation used. The sensory results showed a significant increase in bitterness from 1.9 for LPI to 5.7 for the combination of Alcalase 2.4 L and Papain in one-step process. The aroma attributes of the hydrolysates were very similar to untreated LPI. The results of this study show the possibility of enzymatic hydrolysis of LPI to destroy the major IgE-reactive polypeptides that increase the technofunctional properties of the isolates and thus their use in human nutrition as food ingredients.

16.
Food Chem ; 323: 126780, 2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32334300

ABSTRACT

Interactions between bile acids and plant-based materials, and the related feedback mechanisms in enterohepatic circulation, have been considered targets for lowering cholesterol. This study aimed to identify lupin compounds that interact with primary bile acids on molecular level. Lupin cotyledons were fractionated and bile acid adsorbing activities were investigated using in vitro digestion, equilibrium dialysis and kinetic analyses. Protein- and fibre-enriched fractions significantly (p ≤ 0.05) adsorbed chenodesoxycholic acids (up to 2.33 µmol/100 g DM). Alcohol purification showed that bile acid adsorption is independent of protein and fibre structures. Moreover, high adsorption was observed with an alcohol extract (6.97 µmol chenodesoxycholic acids/100 g DM) that was rich in phytochemicals, such as flavonoids (1842 mg/100 g DM). These results suggest the formation of hydrophobic interactions between polyphenols and bile acids. Further studies of molecular mechanisms are required to define the contributions of polyphenols to the cholesterol-lowering actions of lupins.

17.
J Dairy Sci ; 103(5): 3980-3993, 2020 May.
Article in English | MEDLINE | ID: mdl-32147262

ABSTRACT

Reduced-fat food products can help to prevent obesity and other diet-related diseases. However, the removal of fat often impairs the sensory and textural properties of foods, leading to low consumer acceptance. In this study, we tested various concentrations of fat replacers (inulin, corn dextrin, polydextrose, and microparticulated whey protein) combined with rennet casein to investigate their effects on the melting behavior, dynamic rheological properties, and hardness of reduced-fat processed cheese. We found that increasing concentrations of inulin and corn dextrin reduced the flowability of cheese in the melting test and can thus be used to inhibit flow during heating. Microparticulated whey protein did not affect flowability but caused an increase in the storage and loss moduli as well as the temperature at gel-sol transition. A similar effect was also shown for rennet casein, whereas inulin and polydextrose had little or no effect on these rheological parameters. Corn dextrin had no effect on the storage and loss moduli, but affected the gel-sol transition temperature. No changes in hardness were detected for any concentration of the fat replacers, but increasing the rennet casein content also increased the hardness of the samples, regardless of the fat replacer used. Our results indicate the different concentrations and combinations of fat replacers and rennet casein that can be included in reduced-fat processed cheese to develop products with specific rheological properties, thus meeting future demand for reduced-fat products with attractive sensory attributes.


Subject(s)
Caseins/chemistry , Cheese , Chymosin/chemistry , Fat Substitutes/chemistry , Animals , Cheese/analysis , Hardness , Inulin/chemistry , Temperature , Whey Proteins/chemistry
18.
J Agric Food Chem ; 68(38): 10374-10387, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-31896259

ABSTRACT

Activity-guided fractionations, combined with taste dilution analyses (TDA), were performed to locate the key compounds contributing to the bitter off-taste of pea-protein isolates (Pisum sativum L.). Purification of the compounds perceived with the highest sensory impact, followed by 1D/2D-NMR, (LC-)MS/MS, LC-TOF-MS, and MSE experiments, led to the identification of 14 lipids and lipid oxidation products, namely, 9,10,13-trihydroxyoctadec-12-enoic acid, 9,12,13-trihydroxyoctadec-10-enoic acid, 9,10,11-trihydroxyoctadec-12-enoic, 11,12,13-trihydroxyoctadec-9-enoic acid, (10E,12E)-9-hydroxyoctadeca-10,12-dienoic acid, (9Z,11E)-13-hydroxyoctadeca-9,11-dienoic acid, (9E,11E)-13-hydroxyoctadeca-9,11-dienoic acid, 1-linoleoyl glycerol, α-linolenic acid, 2-hydroxypalmitic acid, 2-hydroxyoleic acid, linoleic acid, (9Z,11E)-13-oxooctadeca-9,11-dienoic acid, and octacosa-6,9,19,22-tetraen. Herein, we present the isolation, structure determination, and sensory activity of these molecules. Depending on their structure, the isolated compounds showed human bitter recognition thresholds between 0.06 and 0.99 mmol/L in water.


Subject(s)
Flavoring Agents/chemistry , Pea Proteins/chemistry , Pisum sativum/chemistry , Adult , Female , Flavoring Agents/isolation & purification , Flavoring Agents/metabolism , Humans , Magnetic Resonance Spectroscopy , Male , Pea Proteins/isolation & purification , Pea Proteins/metabolism , Pisum sativum/metabolism , Tandem Mass Spectrometry , Taste , Young Adult
19.
Foods ; 8(12)2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31847102

ABSTRACT

Lupin protein isolate was fermented with eight different microorganisms to evaluate the influence on sensory profile, techno-functional properties and protein integrity. All investigated microorganisms were able to grow in lupin protein isolate. The results showed that the foaming activity in the range of 1646-1703% and the emulsifying capacity in the range of 347-595 mL of the fermented lupin protein isolates were similar to those of the unfermented ones. Protein solubility at pH 4 showed no significant changes compared to unfermented lupin protein isolate, whereas the solubility at pH 7 decreased significantly from 63.59% for lupin protein isolate to solubilities lower than 42.35% for fermented lupin protein isolate. Fermentation with all microorganisms showed the tendency to decrease bitterness from 2.3 for lupin protein isolate (LPI) to 1.0-2.0 for the fermented ones. The most promising microorganisms for the improvement of the sensory properties of lupin protein isolates were Lactobacillus brevis as it reduced the intensity of characteristic aroma impression (pea-like, green bell pepper-like) from 4.5 to 1.0. The SDS-PAGE results showed the fermentation treatment appeared not to be sufficiently effective to destruct the protein integrity and thus, deplete the allergen potential of lupin proteins. Fermentation allows the development of food ingredients with good functional properties in foam formation and emulsifying capacity, with a well-balanced aroma and taste profile.

20.
Nutrients ; 11(9)2019 Sep 05.
Article in English | MEDLINE | ID: mdl-31492011

ABSTRACT

Interference of dietary fibres with the enterohepatic circulation of bile acids is proposed as a mechanism for lowering cholesterol. We investigated how lupin hull and cotyledon dietary fibres interact with primary bile acids using an in vitro model under simulated upper gastrointestinal conditions. Cell wall polysaccharides were isolated and extracted to separate pectin-like, hemicellulosic, and lignocellulosic structures. Lupin hull consisted mainly of structural components rich in cellulose. The viscosity of the in vitro digesta of lupin hull was low, showing predominantly liquid-like viscoelastic properties. On the other hand, lupin cotyledon fibre retarded bile acid release due to increased viscosity of the in vitro digesta, which was linked with high contents of pectic polymers forming an entangled network. Molecular interactions with bile acids were not measured for the hull but for the cotyledon, as follows: A total of 1.29 µmol/100 mg DM of chenodesoxycholic acids were adsorbed. Molecular interactions of cholic and chenodesoxycholic acids were evident for lignin reference material but did not account for the adsorption of the lupin cotyledon. Furthermore, none of the isolated and fractionated cell wall materials showed a significant adsorptive capacity, thus disproving a major role of lupin cell wall polysaccharides in bile acid adsorption.


Subject(s)
Bile Acids and Salts/metabolism , Cell Wall/metabolism , Dietary Fiber/metabolism , Digestion , Lupinus/metabolism , Polysaccharides/metabolism , Adsorption , Cotyledon/metabolism , Elasticity , Hydrophobic and Hydrophilic Interactions , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...