Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
J Clin Invest ; 126(2): 571-84, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26690703

ABSTRACT

Airway hyperresponsiveness (AHR) affects 55%-77% of children with sickle cell disease (SCD) and occurs even in the absence of asthma. While asthma increases SCD morbidity and mortality, the mechanisms underlying the high AHR prevalence in a hemoglobinopathy remain unknown. We hypothesized that placenta growth factor (PlGF), an erythroblast-secreted factor that is elevated in SCD, mediates AHR. In allergen-exposed mice, loss of Plgf dampened AHR, reduced inflammation and eosinophilia, and decreased expression of the Th2 cytokine IL-13 and the leukotriene-synthesizing enzymes 5-lipoxygenase and leukotriene-C4-synthase. Plgf-/- mice treated with leukotrienes phenocopied the WT response to allergen exposure; conversely, anti-PlGF Ab administration in WT animals blunted the AHR. Notably, Th2-mediated STAT6 activation further increased PlGF expression from lung epithelium, eosinophils, and macrophages, creating a PlGF/leukotriene/Th2-response positive feedback loop. Similarly, we found that the Th2 response in asthma patients is associated with increased expression of PlGF and its downstream genes in respiratory epithelial cells. In an SCD mouse model, we observed increased AHR and higher leukotriene levels that were abrogated by anti-PlGF Ab or the 5-lipoxygenase inhibitor zileuton. Overall, our findings indicate that PlGF exacerbates AHR and uniquely links the leukotriene and Th2 pathways in asthma. These data also suggest that zileuton and anti-PlGF Ab could be promising therapies to reduce pulmonary morbidity in SCD.


Subject(s)
Anemia, Sickle Cell/metabolism , Asthma/metabolism , Interleukin-13/metabolism , Leukotrienes/metabolism , Pregnancy Proteins/metabolism , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/pathology , Animals , Asthma/etiology , Asthma/genetics , Asthma/pathology , Disease Models, Animal , Hydroxyurea/analogs & derivatives , Hydroxyurea/pharmacology , Interleukin-13/genetics , Leukotrienes/genetics , Mice , Mice, Knockout , Placenta Growth Factor , Pregnancy Proteins/genetics , Th2 Cells/metabolism , Th2 Cells/pathology
3.
Mol Cell Biol ; 35(3): 514-28, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25403488

ABSTRACT

Pulmonary hypertension (PHT) is associated with high mortality in sickle cell anemia (SCA). Previously, we showed that elevated levels of placenta growth factor (PlGF) in SCA patients correlate with increased levels of the potent vasoconstrictor endothelin-1 (ET-1) and PHT. Moreover, PlGF induced the expression of ET-1 via hypoxia-inducible factor 1α. Here, we show a novel example of ET-1 posttranscriptional regulation by PlGF via action of microRNA 648 (miR-648), which is subject to transcriptional coregulation with its host gene, MICAL3 (microtubule-associated monooxygenase, calponin, and LIM domain containing 3gene). PlGF repressed expression of miR-648 in endothelial cells. Luciferase reporter assays using wild-type and mutant ET-1 3' untranslated region (UTR) constructs, and transfection of miR-648 mimics showed that miR-648 targets the 3' UTR of ET-1 mRNA. Since miR-648 is located in a 5'-proximal intron of MICAL3, we examined which of three potential promoters was responsible for its expression. The MICAL3 distal promoter (P1) was the predominant promoter used for transcription of pre-miR-648, and it was under positive control by PAX5 (paired box protein 5) transcription factor, as demonstrated by the loss and gain of function of PAX5 activity, and chromatin immunoprecipitation analysis. These studies provide a novel link wherein PlGF-mediated downregulation of PAX5 attenuates miR-648 expression leading to increased ET-1 levels that are known to induce PHT in SCA.


Subject(s)
Endothelin-1/metabolism , MicroRNAs/genetics , Mixed Function Oxygenases/metabolism , PAX5 Transcription Factor/metabolism , Transcription Factors/metabolism , Anemia, Sickle Cell/metabolism , Cells, Cultured , Endothelial Cells/metabolism , Endothelin-1/genetics , Gene Expression Regulation/physiology , Humans , RNA, Messenger/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...