Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 3(8): 9929-9933, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-31459121

ABSTRACT

We have determined the time-dependent displacement fields in molecular sub-micrometer thin films as response to femtosecond and picosecond laser pulse heating by time-resolved X-ray diffraction. This method allows a direct absolute determination of the molecular displacements induced by electron-phonon interactions, which are crucial for, for example, charge transport in organic electronic devices. We demonstrate that two different modes of coherent shear motion can be photoexcited in a thin film of organic molecules by careful tuning of the laser penetration depth relative to the thickness of the film. The measured response of the organic film to impulse heating is explained by a thermoelastic model and reveals the spatially resolved displacement in the film. Thereby, information about the profile of the energy deposition in the film as well as about the mechanical interaction with the substrate material is obtained.

2.
J Chem Phys ; 125(23): 234302, 2006 Dec 21.
Article in English | MEDLINE | ID: mdl-17190553

ABSTRACT

The authors report time resolved photoelectron spectra of the (1)B(2)((1)Sigma(u) (+)) state of CS(2) at pump wavelengths in the region of 200 nm. In contrast to previous studies, the authors find that the predissociation dynamics is not well described by a single exponential decay. Biexponential modeling of the authors' data reveals a rapid decay pathway (tau<50 fs), in addition to a longer lived channel (tau approximately 350-650 fs) that displays a marked change in apparent lifetime when the polarization of the pump laser is rotated with respect to that of the probe. Since the initially populated (1)B(2)((1)Sigma(u) (+)) state may decay to form either S((1)D) or S((3)P) products (the latter produced via a spin-orbit induced crossing from a singlet to a triplet electronic surface), this lifetime observation may be rationalized in terms of changes in the relative ionization cross section of these singlet and triplet states of CS(2) as a function of laser polarization geometry. The experimentally observed lifetime of the longer lived channel is therefore a superposition of these two pathways, both of which decay on very similar time scales.

3.
Phys Rev Lett ; 89(13): 133004, 2002 Sep 23.
Article in English | MEDLINE | ID: mdl-12225023

ABSTRACT

Using two identical 110 femtosecond (fs) optical pulses separated by 310 fs, we launch two dissociative wave packets in I2. We measure the square of the wave function as a function of both the internuclear separation, /Psi(R)/(2), and of the internuclear velocity, /Psi(v(R))/(2), by ionizing the dissociating molecule with an intense 20 fs probe pulse. Strong interference is observed in both /Psi(R)/(2) and in /Psi(v(R))/(2). The interference, and therefore the shape of the wave function, is controlled through the phase difference between the two dissociation pulses in good agreement with calculations.

SELECTION OF CITATIONS
SEARCH DETAIL
...