Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Iperception ; 15(4): 20416695241264736, 2024.
Article in English | MEDLINE | ID: mdl-39055288

ABSTRACT

Predicting the timing of incoming information allows brain to optimize information processing in dynamic environments. However, the effects of temporal predictions on tactile perception are not well established. In this study, two experiments were conducted to determine how temporal predictions interact with conditional probabilities in tactile perceptual processing. In Experiment 1, we explored the range of the interval between preceding ready cues and imperative targets in which temporal prediction effects can be observed. This prediction effect was observed for intervals of 500 and 1,000 ms. In Experiment 2, we investigated the benefits of temporal predictions on tactile perception while manipulating the conditional probability (setting the stimulus onset earlier or later than the predicted moment in short and long intervals). Our results revealed that this effect became stronger as the probability of the stimulus at the predicted time point increased under short-interval conditions. Together, our results show that the difficulty of transferring processing resources increases in temporally dynamic environments, suggesting a greater subjective cost associated with maladaptive responses to temporally uncertain events.

2.
Neuropsychologia ; 201: 108941, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-38908477

ABSTRACT

Utilizing the high temporal resolution of event-related potentials (ERPs), we compared the time course of processing incongruent color versus 3D-depth information. Participants were asked to judge whether the food color (color condition) or 3D structure (3D-depth condition) was congruent or incongruent with their previous knowledge and experience. The behavioral results showed that the reaction times in the congruent 3D-depth condition were slower than those in the congruent color condition. The reaction times in the incongruent 3D-depth condition were slower than those in the incongruent color condition. The ERP results showed that incongruent color stimuli induced a larger N270, larger P300, and smaller N400 components in the fronto-central region than the congruent color stimuli. Incongruent 3D-depth stimuli induced a smaller N1 in the occipital region, larger P300 and smaller N400 in the parietal-occipital region than congruent 3D-depth stimuli. The time-frequency analysis found that incongruent color stimuli induced a larger theta band (360-580 ms) activation in the fronto-central region than congruent color stimuli. Incongruent 3D-depth stimuli induced larger alpha and beta bands (240-350 ms) activation in the parietal region than congruent 3D-depth stimuli. Our results suggest that the human brain deals with violating general color or depth knowledge in different time courses. We speculate that the depth perception conflict was dominated by solving the problem with visual processing, whereas the color perception conflict was dominated by solving the problem with semantic violation.


Subject(s)
Brain , Color Perception , Depth Perception , Electroencephalography , Evoked Potentials , Reaction Time , Humans , Male , Female , Color Perception/physiology , Young Adult , Reaction Time/physiology , Brain/physiology , Evoked Potentials/physiology , Depth Perception/physiology , Adult , Photic Stimulation , Time Factors , Brain Mapping
3.
Exp Brain Res ; 242(4): 809-817, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38400993

ABSTRACT

It is well known that information on stimulus orientation plays an important role in sensory processing. However, the neural mechanisms underlying somatosensory orientation perception are poorly understood. Adaptation has been widely used as a tool for examining sensitivity to specific features of sensory stimuli. Using the adaptation paradigm, we measured event-related potentials (ERPs) in response to tactile orientation stimuli presented pseudo-randomly to the right-hand palm in trials with all the same or different orientations. Twenty participants were asked to count the tactile orientation stimuli. The results showed that the adaptation-related N60 component was observed around contralateral central-parietal areas, possibly indicating orientation processing in the somatosensory regions. Conversely, the adaptation-related N120 component was identified bilaterally across hemispheres, suggesting the involvement of the frontoparietal circuitry in further tactile orientation processing. P300 component was found across the whole brain in all conditions and was associated with task demands, such as attention and stimulus counting. These findings help provide an understanding of the mechanisms of tactile orientation processing in the human brain.


Subject(s)
Electroencephalography , Touch Perception , Humans , Evoked Potentials/physiology , Touch/physiology , Brain/physiology , Attention/physiology , Touch Perception/physiology
4.
Emotion ; 23(2): 512-520, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35446057

ABSTRACT

Cuteness perception is a basic function in social interactions. Most studies focus on the impact of facial elemental features on cuteness ratings, but there are many factors that affect cuteness perception. Spatial frequency (SF) is one of the most important parameters in studies on faces. However, few studies have investigated the impact of SFs on cuteness perception. In this study, 16 images of infant faces with four cuteness levels were selected by a prerating experiment. Using a 7-point Likert scale paradigm, participants were asked to rate the cuteness of infant faces, including one version of broad unfiltered faces and four versions of filtered faces. The results showed that filtered SFs reduced cuteness ratings and that the impact of SFs was related to the cuteness levels of faces. Specifically, faces with low SFs got the lowest cuteness ratings. The ratings of faces with low SFs in neutral cuteness had a greater reduction than that in positive cuteness. In comparison, faces with medium and high SFs obtained relatively high cuteness ratings. However, the ratings in medium SFs were higher than that in high SFs if the cuteness of faces exceeded a certain level. Interestingly, their ratings reduction size increased with the improvement of cuteness levels. These results extend our understanding of the cuteness mechanism from an SF processing perspective. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Subject(s)
Face , Perception , Humans , Infant
5.
Front Psychol ; 13: 927234, 2022.
Article in English | MEDLINE | ID: mdl-36160507

ABSTRACT

The masked priming paradigm has been extensively used to investigate the indirect impacts of unconscious stimuli on conscious behaviors, and the congruency effect of priming on free choices has gained increasing attention. Free choices allow participants to voluntarily choose a response from multiple options during each trial. While repeated practice is known to increase priming effects in subliminal visual tasks, whether practice increases the priming effect of free choices in the masked priming paradigm is unclear. And it is also not clear how the proportions of free choice and forced choice trials in one block will affect the free choice masked priming effect. The present study applied repeated practice in the masked priming paradigm and found that after training, the participants were more likely to be influenced by masked primes during free choice, but this training process did not alter the visibility of masked stimuli. In addition, this study revealed that when the proportions of free choice and forced choice trials were equal during the training stage, this enhanced effect by practice was the strongest. These results indicated that practice could enhance masked stimulus processing in free-choice, and that the learning effect may mainly be derived from the early selection and integrated processing of masked stimuli.

6.
Atten Percept Psychophys ; 84(5): 1625-1634, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35641858

ABSTRACT

Evidence has shown that multisensory integration benefits to unisensory perception performance are asymmetric and that auditory perception performance can receive more multisensory benefits, especially when the attention focus is directed toward a task-irrelevant visual stimulus. At present, whether the benefits of semantically (in)congruent multisensory integration with modal-based attention for subsequent unisensory short-term memory (STM) retrieval are also asymmetric remains unclear. Using a delayed matching-to-sample paradigm, the present study investigated this issue by manipulating the attention focus during multisensory memory encoding. The results revealed that both visual and auditory STM retrieval reaction times were faster under semantically congruent multisensory conditions than under unisensory memory encoding conditions. We suggest that coherent multisensory representation formation might be optimized by restricted multisensory encoding and can be rapidly triggered by subsequent unisensory memory retrieval demands. Crucially, auditory STM retrieval is exclusively accelerated by semantically congruent multisensory memory encoding, indicating that the less effective sensory modality of memory retrieval relies more on the coherent prior formation of a multisensory representation optimized by modal-based attention.


Subject(s)
Memory, Short-Term , Visual Perception , Acoustic Stimulation/methods , Attention , Auditory Perception , Humans , Photic Stimulation/methods , Reaction Time
7.
J Neurophysiol ; 127(5): 1398-1406, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35443143

ABSTRACT

Perceptual learning is commonly assumed to enhance perception through continuous attended sensory input. However, learning is generalizable to performance in untrained stimuli and tasks. Although previous studies have observed a possible generalization effect across tasks as a result of working memory (WM) training, comparisons of the contributions of WM training and continuous attended sensory input to perceptual learning generalization are still rare. Therefore, we compared which factors contributed most to perceptual generalization and investigated which skills acquired during WM training led to tactile generalization across tasks. Here, a Braille-like dot pattern matching n-back WM task was used as the WM training task, with four workload levels (0, 1, 2, and 3-back levels). A tactile angle discrimination (TAD) task was used as a pre- and posttest to assess improvements in tactile perception. Between tests, four subject groups were randomly assigned to four different workload n-back tasks to consecutively complete three sessions of training. The results showed that tactile n-back WM training could enhance TAD performance, with the 3-back training group having the highest TAD threshold improvement rate. Furthermore, the rate of WM capacity improvement on the 3-back level across training sessions was correlated with the rate of TAD threshold improvement. These findings suggest that continuous attended sensory input and enhanced WM capacity can lead to improvements in TAD ability, and that greater improvements in WM capacity can predict greater improvements in TAD performance.NEW & NOTEWORTHY Perceptual learning is not always specific to the trained task and stimuli. We demonstrate that both continuous attended sensory input and improved WM capacity can be used to enhance tactile angle discrimination (TAD) ability. Moreover, WM capacity improvement is important in generalizing the training effect to the TAD ability. These findings contribute to understanding the mechanism of perceptual learning generalization across tasks.


Subject(s)
Learning , Memory, Short-Term , Cognition , Generalization, Psychological , Touch
8.
Atten Percept Psychophys ; 84(7): 2205-2218, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35304700

ABSTRACT

Neuronal studies have shown that selectively attending to a common object in one sensory modality results in facilitated processing of that object's representations in the ignored sensory modality. Thus, the audiovisual (AV) integration of common objects can be observed under modality-specific selective attention. However, little is known about whether this AV integration can also occur under increased attentional load conditions. Additionally, whether semantic associations between multisensory features of common objects modulate the influence of increased attentional loads on this cross-modal integration remains unknown. In the present study, participants completed an AV integration task (ignored auditory stimuli) under various attentional load conditions: no load, low load, and high load. The semantic associations between AV stimuli were composed of animal pictures presented concurrently with semantically congruent, semantically incongruent, or semantically unrelated auditory stimuli. Our results demonstrated that attentional loads did not disrupt the integration of semantically congruent AV stimuli but suppressed the potential alertness effects induced by incongruent or unrelated auditory stimuli under the condition of modality-specific selective attention. These findings highlight the critical role of semantic association between AV stimuli in modulating the effect of attentional loads on the AV integration of modality-specific selective attention.


Subject(s)
Semantics , Visual Perception , Acoustic Stimulation/methods , Animals , Attention/physiology , Auditory Perception , Humans , Photic Stimulation/methods , Visual Perception/physiology
10.
Neuroimage ; 248: 118867, 2022 03.
Article in English | MEDLINE | ID: mdl-34974114

ABSTRACT

The human brain continuously generates predictions of incoming sensory input and calculates corresponding prediction errors from the perceived inputs to update internal predictions. In human primary somatosensory cortex (area 3b), different cortical layers are involved in receiving the sensory input and generation of error signals. It remains unknown, however, how the layers in the human area 3b contribute to the temporal prediction error processing. To investigate prediction error representation in the area 3b across layers, we acquired layer-specific functional magnetic resonance imaging (fMRI) data at 7T from human area 3b during a task of index finger poking with no-delay, short-delay and long-delay touching sequences. We demonstrate that all three tasks increased activity in both superficial and deep layers of area 3b compared to the random sensory input. The fMRI signal was differentially modulated solely in the deep layers rather than the superficial layers of area 3b by the delay time. Compared with the no-delay stimuli, activity was greater in the deep layers of area 3b during the short-delay stimuli but lower during the long-delay stimuli. This difference activity features in the superficial and deep layers suggest distinct functional contributions of area 3b layers to tactile temporal prediction error processing. The functional segregation in area 3b across layers may reflect that the excitatory and inhibitory interplay in the sensory cortex contributions to flexible communication between cortical layers or between cortical areas.


Subject(s)
Brain Mapping , Fingers/physiology , Magnetic Resonance Imaging/methods , Somatosensory Cortex/physiology , Time Perception , Touch/physiology , Adult , Female , Healthy Volunteers , Humans , Image Processing, Computer-Assisted , Male , Reproducibility of Results , Sensitivity and Specificity
11.
Exp Brain Res ; 240(3): 773-789, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35034179

ABSTRACT

Previous studies have paid special attention to the relationship between local features (e.g., raised dots) and human roughness perception. However, the relationship between global features (e.g., curved surface) and haptic roughness perception is still unclear. In the present study, a series of roughness estimation experiments was performed to investigate how global features affect human roughness perception. In each experiment, participants were asked to estimate the roughness of a series of haptic stimuli that combined local features (raised dots) and global features (sinusoidal-like curves). Experiments were designed to reveal whether global features changed their haptic roughness estimation. Furthermore, the present study tested whether the exploration method (direct, indirect, and static) changed haptic roughness estimations and examined the contribution of global features to roughness estimations. The results showed that sinusoidal-like curved surfaces with small periods were perceived to be rougher than those with large periods, while the direction of finger movement and indirect exploration did not change this phenomenon. Furthermore, the influence of global features on roughness was modulated by local features, regardless of whether raised-dot surfaces or smooth surfaces were used. Taken together, these findings suggested that an object's global features contribute to haptic roughness perceptions, while local features change the weight of the contribution that global features make to haptic roughness perceptions.


Subject(s)
Haptic Technology , Touch Perception , Fingers , Humans , Movement , Stereognosis , Touch
12.
Neurosci Lett ; 770: 136393, 2022 01 23.
Article in English | MEDLINE | ID: mdl-34915099

ABSTRACT

The symmetry axes of a stimulus are a critical determinant of visual perception. Although much is known about the effects of a single symmetry axis on perception, the effects of multiple symmetry axes are still poorly understood. Here, we investigated the influence of the number of symmetry axes on brain activity using event-related potentials (ERPs). Our results showed that altering the number of symmetry axes affects both the amplitude and the latency of ERPs. Specifically, the amplitude of ERP components increased as the number of symmetry axes increased, starting at the N1 (165-175 ms) component and lasting until the P2 (230-250 ms) component in the bilateral posterior areas and until the N2 (340 ms) component in the frontal-central areas. Importantly, the latency of ERP components was reduced when the number of symmetry axes increased, starting at the N1 in the right posterior area and lasting until the P2 component in the bilateral posterior areas. The temporal and spatial differences in these effects imply that activity related to symmetry axes gradually changes throughout the ventral visual streams in the human brain.


Subject(s)
Evoked Potentials, Visual , Frontal Lobe/physiology , Functional Laterality , Adult , Female , Humans , Male , Visual Perception
13.
Perception ; 50(11): 917-932, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34841972

ABSTRACT

Although previous studies have shown that semantic multisensory integration can be differentially modulated by attention focus, it remains unclear whether attentionally mediated multisensory perceptual facilitation could impact further cognitive performance. Using a delayed matching-to-sample paradigm, the present study investigated the effect of semantically congruent bimodal presentation on subsequent unisensory working memory (WM) performance by manipulating attention focus. The results showed that unisensory WM retrieval was faster in the semantically congruent condition than in the incongruent multisensory encoding condition. However, such a result was only found in the divided-modality attention condition. This result indicates that a robust multisensory representation was constructed during semantically congruent multisensory encoding with divided-modality attention; this representation then accelerated unisensory WM performance, especially auditory WM retrieval. Additionally, an overall faster unisensory WM retrieval was observed under the modality-specific selective attention condition compared with the divided-modality condition, indicating that the division of attention to address two modalities demanded more central executive resources to encode and integrate crossmodal information and to maintain a constructed multisensory representation, leaving few resources for WM retrieval. Additionally, the present finding may support the amodal view that WM has an amodal central storage component that is used to maintain modal-based attention-optimized multisensory representations.


Subject(s)
Auditory Perception , Memory, Short-Term , Acoustic Stimulation , Attention , Humans , Photic Stimulation , Visual Perception
14.
Brain Behav ; 11(3): e02033, 2021 03.
Article in English | MEDLINE | ID: mdl-33470046

ABSTRACT

BACKGROUND: Vision and touch are thought to contribute information to object perception in an independent but complementary manner. The left lateral posterior parietal cortex (LPPC) has long been associated with multisensory information processing, and it plays an important role in visual and haptic crossmodal information retrieval. However, it remains unclear how LPPC subregions are involved in visuo-haptic crossmodal retrieval processing. METHODS: In the present study, we used an fMRI experiment with a crossmodal delayed match-to-sample paradigm to reveal the functional role of LPPC subregions related to unimodal and crossmodal dot-surface retrieval. RESULTS: The visual-to-haptic condition enhanced the activity of the left inferior parietal lobule relative to the haptic unimodal condition, whereas the inverse condition enhanced the activity of the left superior parietal lobule. By contrast, activation of the left intraparietal sulcus did not differ significantly between the crossmodal and unimodal conditions. Seed-based resting connectivity analysis revealed that these three left LPPC subregions engaged distinct networks, confirming their different functions in crossmodal retrieval processing. CONCLUSION: Taken together, the findings suggest that functional heterogeneity of the left LPPC during visuo-haptic crossmodal dot-surface retrieval processing reflects that the left LPPC does not simply contribute to retrieval of past information; rather, each subregion has a specific functional role in resolving different task requirements.


Subject(s)
Parietal Lobe , Touch Perception , Brain Mapping , Magnetic Resonance Imaging , Parietal Lobe/diagnostic imaging , Touch , Vision, Ocular , Visual Perception
15.
Neuroimage ; 231: 117754, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33454415

ABSTRACT

Haptic object perception begins with continuous exploratory contact, and the human brain needs to accumulate sensory information continuously over time. However, it is still unclear how the primary sensorimotor cortex (PSC) interacts with these higher-level regions during haptic exploration over time. This functional magnetic resonance imaging (fMRI) study investigates time-dependent haptic object processing by examining brain activity during haptic 3D curve and roughness estimations. For this experiment, we designed sixteen haptic stimuli (4 kinds of curves × 4 varieties of roughness) for the haptic curve and roughness estimation tasks. Twenty participants were asked to move their right index and middle fingers along the surface twice and to estimate one of the two features-roughness or curvature-depending on the task instruction. We found that the brain activity in several higher-level regions (e.g., the bilateral posterior parietal cortex) linearly increased as the number of curves increased during the haptic exploration phase. Surprisingly, we found that the contralateral PSC was parametrically modulated by the number of curves only during the late exploration phase but not during the early exploration phase. In contrast, we found no similar parametric modulation activity patterns during the haptic roughness estimation task in either the contralateral PSC or in higher-level regions. Thus, our findings suggest that haptic 3D object perception is processed across the cortical hierarchy, whereas the contralateral PSC interacts with other higher-level regions across time in a manner that is dependent upon the features of the object.


Subject(s)
Form Perception/physiology , Magnetic Resonance Imaging/methods , Physical Stimulation/methods , Sensorimotor Cortex/diagnostic imaging , Sensorimotor Cortex/physiology , Touch Perception/physiology , Adult , Female , Humans , Male , Photic Stimulation/methods , Visual Perception/physiology , Young Adult
16.
Front Psychol ; 12: 674456, 2021.
Article in English | MEDLINE | ID: mdl-35087437

ABSTRACT

Researchers have suggested that infants exhibiting baby schema are considered cute. These similar studies have mainly focused on changes in overall baby schema facial features. However, whether a change in only eye size affects the perception of cuteness across different facial expressions and ages has not been explicitly evaluated until now. In the present study, a paired comparison method and 7-point scale were used to investigate the effects of eye size on perceived cuteness across facial expressions (positive, neutral, and negative) and ages (adults and infants). The results show that stimuli with large eyes were perceived to be cuter than both unmanipulated eyes and small eyes across all facial expressions and age groups. This suggests not only that the effect of baby schema on cuteness is based on changes in a set of features but also that eye size as an individual feature can affect the perception of cuteness.

17.
Atten Percept Psychophys ; 83(1): 308-314, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33098067

ABSTRACT

Temporal expectation is the ability to select the precise point in time for doing something to produce an optimal effect. Two sources of information that humans use to generate temporal expectations are rhythmic and symbolic cues. Both types of cues have been proven effective in directing attention to a future point in time resulting in improved performance. However, the temporal precision of the two forms of temporal expectation have rarely been compared. In the current study, 17 participants performed two temporal expectation tasks in which either a rhythmic cue or a symbolic cue indicated that a future target would appear after a 500-ms (short) or 1,500-ms (long) interval; the target appeared at the expected time in 54% of trials and at an unexpected earlier or later interval in 36% of trials. In both tasks, we observed that the reaction time (RT) curves were U-shaped, with a slower RT for the earlier and later unexpected intervals and a faster RT for intervals approaching the expected point in time. Furthermore, we found a significant interaction between task and the quadratic term of temporal expectation, which indicates that the U-shaped RT curves for the rhythmic cue task are steeper than those for the symbolic cue task. Thus, the current results revealed that compared with symbolic cues, temporal expectation driven by rhythmic cues provides a more precise attentional focus in time.


Subject(s)
Cues , Motivation , Cognition , Humans , Reaction Time
18.
Atten Percept Psychophys ; 82(8): 3993-4006, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32888172

ABSTRACT

Using a radial frequency discrimination task that has not been tested in many previous studies, we examined the dependence of the pattern radius (4 to 16 deg) on the radial frequency thresholds of two different types of concentric radial frequency (RF) patterns: constant circular contour frequency (CCF) RF patterns with different radii, which have the constant physical length of modulation cycle in external real-world space, and constant radial frequency magnified RF patterns with different radii, which have the constant cortical length of modulation cycles. These two types RF patterns used as the reference stimuli had an equal maximum orientation difference from circularity regardless of change in radius. The discrimination threshold expressed by the frequency ratio between RF patterns of different frequencies vs. radius functions for the constant CCF RF patterns indicated different functional forms dependent on the modulation amplitude of the RF patterns. The thresholds increased with increasing pattern radius for small modulation amplitude RF patterns but were relatively flattened for large-amplitude RF patterns. This dependence was ascribed to the eccentricity effect wherein the deformation thresholds for discriminating the RF pattern from a circle increase with increasing stimulus eccentricity (Feng et al. 2020). The discrimination thresholds vs. radius functions for the magnified RF patterns were also flattened for different modulation amplitudes and frequencies. The thresholds (frequency ratio) were similar at all eccentricities. Cortical magnification neutralized the eccentricity effect observed for the constant CCF patterns.


Subject(s)
Form Perception , Visual Fields , Discrimination, Psychological , Humans , Pattern Recognition, Visual , Radius , Sensory Thresholds
19.
J Vis Exp ; (161)2020 07 30.
Article in English | MEDLINE | ID: mdl-32804156

ABSTRACT

Passive tactile perception is the ability to passively and statically perceive stimulus information coming from the skin; for example, the ability to sense spatial information is the strongest in the skin on the hands. This ability is termed tactile spatial acuity, and is measured by the tactile threshold or discrimination threshold. At present, the two-point threshold is extensively used as a measure of tactile spatial acuity, although many studies have indicated that critical deficits exist in two-point discrimination. Therefore, a computer-controlled tactile stimulus system was developed, the tactile semiautomated passive-finger angle stimulator (TSPAS), using the tactile angle discrimination threshold as a new measure for tactile spatial acuity. The TSPAS is a simple, easily operated system that applies raised angle stimuli to a subject's passive fingerpad, while controlling movement speed, distance, and contact duration. The components of the TSPAS are described in detail as well as the procedure to calculate the tactile angle discrimination threshold.


Subject(s)
Fingers/physiology , Touch Perception/physiology , Humans
20.
Perception ; 49(8): 858-881, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32791943

ABSTRACT

We measured the eccentricity effect of deformation thresholds of circular contours for two types of the radial frequency (RF) patterns with their centers at the fixation point: constant circular contour frequency (CCF) RF patterns and constant RF magnified (retino-cortical scaling) RF patterns. We varied the eccentricity by changing the mean radius of the RF patterns while keeping the centers of the RF patterns at the fixation point. Our peripheral stimulus presentation was distinguished from previous studies which have simply translated RF patterns at different locations in the visual field. Sensitivity for such shape discrimination fell off as the moderate and high CCF patterns were presented on more eccentric sites but did not as the low CCF patterns. However, sensitivity held constant as the magnified RF patterns were presented on more eccentric sites, indicating that the eccentricity effects observed for the high and moderate CCF patterns were neutralized by retinocortical mapping. Notably, sensitivity for the magnified RF patterns with large radii (4°-16°) presented in the peripheral field revealed a similar RF dependence observed for RF patterns with small radii (0.25°-1.0°) presented at the fovea in previous studies.


Subject(s)
Form Perception/physiology , Pattern Recognition, Visual/physiology , Visual Fields/physiology , Adult , Female , Humans , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...