Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinformatics ; 39(39 Suppl 1): i121-i130, 2023 06 30.
Article in English | MEDLINE | ID: mdl-37387161

ABSTRACT

MOTIVATION: There exists a range of different quantification frameworks to estimate the synergistic effect of drug combinations. The diversity and disagreement in estimates make it challenging to determine which combinations from a large drug screening should be proceeded with. Furthermore, the lack of accurate uncertainty quantification for those estimates precludes the choice of optimal drug combinations based on the most favourable synergistic effect. RESULTS: In this work, we propose SynBa, a flexible Bayesian approach to estimate the uncertainty of the synergistic efficacy and potency of drug combinations, so that actionable decisions can be derived from the model outputs. The actionability is enabled by incorporating the Hill equation into SynBa, so that the parameters representing the potency and the efficacy can be preserved. Existing knowledge may be conveniently inserted due to the flexibility of the prior, as shown by the empirical Beta prior defined for the normalized maximal inhibition. Through experiments on large combination screenings and comparison against benchmark methods, we show that SynBa provides improved accuracy of dose-response predictions and better-calibrated uncertainty estimation for the parameters and the predictions. AVAILABILITY AND IMPLEMENTATION: The code for SynBa is available at https://github.com/HaotingZhang1/SynBa. The datasets are publicly available (DOI of DREAM: 10.7303/syn4231880; DOI of the NCI-ALMANAC subset: 10.5281/zenodo.4135059).


Subject(s)
Benchmarking , Bayes Theorem , Uncertainty , Drug Combinations , Drug Evaluation, Preclinical
2.
Data Brief ; 30: 105335, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32258263

ABSTRACT

Representing 3D geometry for different tasks, e.g. rendering and reconstruction, is an important goal in different fields, such as computer graphics, computer vision and robotics. Robotic applications often require perception of object shape information extracted from sensory data that can be noisy and incomplete. This is a challenging task and in order to facilitate analysis of new methods and comparison of different approaches for shape modeling (e.g. surface estimation), completion and exploration, we provide real sensory data acquired from exploring various objects of different complexities. The dataset includes visual and tactile readings in the form of 3D point clouds obtained using two different robot setups that are equipped with visual and tactile sensors. During data collection, the robots touch the experiment objects in a predefined manner at various exploration configurations and gather visual and tactile points in the same coordinate frame based on calibration between the robots and the used cameras. The goal of this exhaustive exploration procedure is to sense unseen parts of the objects which are not visible to the cameras, but can be sensed via tactile sensors activated at touched areas. The data was used for shape completion and modeling via Implicit Surface representation and Gaussian-Process-based regression, in the work "Object shape estimation and modeling, based on sparse Gaussian process implicit surfaces, combining visual data and tactile exploration" [3], and also used partially in "Enhancing visual perception of shape through tactile glances" [4], both studying efficient exploration of objects to reduce number of touches.

3.
PLoS One ; 9(2): e89184, 2014.
Article in English | MEDLINE | ID: mdl-24586580

ABSTRACT

Computational methods have started playing a significant role in semantic analysis. One particularly accessible area for developing good computational methods for linguistic semantics is in color naming, where perceptual dissimilarity measures provide a geometric setting for the analyses. This setting has been studied first by Berlin & Kay in 1969, and then later on by a large data collection effort: the World Color Survey (WCS). From the WCS, a dataset on color naming by 2 616 speakers of 110 different languages is made available for further research. In the analysis of color naming from WCS, however, the choice of analysis method is an important factor of the analysis. We demonstrate concrete problems with the choice of metrics made in recent analyses of WCS data, and offer approaches for dealing with the problems we can identify. Picking a metric for the space of color naming distributions that ignores perceptual distances between colors assumes a decorrelated system, where strong spatial correlations in fact exist. We can demonstrate that the corresponding issues are significantly improved when using Earth Mover's Distance, or Quadratic [Formula: see text]-square Distance, and we can approximate these solutions with a kernel-based analysis method.


Subject(s)
Choice Behavior/physiology , Color Perception/physiology , Color , Humans , Language , Linguistics/methods , Semantics
SELECTION OF CITATIONS
SEARCH DETAIL
...